
DANOS-Vyatta edition
Disaggregated Network

Operating System
Version 2009a

Tunnels Configuration Guide
October 2020

Contents

Chapter 1. Copyright Statement... 1
Chapter 2. Preface.. 2

Document conventions.. 2
Chapter 3. About This Guide.. 4
Chapter 4. Tunnels Overview.. 5

Overview.. 5
GRE... 5

Applications for GRE..6
Bridging with GRE..6
Multipoint GRE... 6
Supported standards for GRE..7

IP-in-IP... 7
Applications for IP-in-IP..8
Supported standards for IP-in-IP... 8

SIT..8
Applications for SIT.. 9
Supported standards for SIT..9

Securing tunnels..9
DHCP enabled interfaces as local tunnel endpoints...9
Using tunnels to extend IPsec capability.. 10

Chapter 5. Tunnel Configuration Examples...11
Before you begin... 11
GRE tunnel connecting remote networks... 11

Configure WEST...12
Configure EAST..14

A GRE tunnel with authentication... 16
Configure WEST...17
Configure EAST..18

Multipoint GRE tunnels..20
Configure HUB... 21

IP Infusion Inc. Proprietary

Contents | iii

Configure SPOKE1...23
Configure SPOKE2...24

Tunneling IPv6 traffic in IPv4 with SIT..26
Create a SIT tunnel..27

Chapter 6. Tunnel Commands...30
Related tunnel commands...30
clear interfaces tunnel counters.. 30
interfaces tunnel.. 31
interfaces tunnel address.. 31
interfaces tunnel bfd template...32
interfaces tunnel bridge-group...33
interfaces tunnel description..34
interfaces tunnel disable..35
interfaces tunnel disable-link-detect.. 36
interfaces tunnel encapsulation...36
interfaces tunnel ip tcp-mss limit...38
interfaces tunnel ip tcp-mss mtu... 39
interfaces tunnel ip tcp-mss mtu-minus.. 40
interfaces tunnel ipv6.. 40
interfaces tunnel ipv6 address.. 41
interfaces tunnel ipv6 disable..42
interfaces tunnel ipv6 disable-forwarding..43
interfaces tunnel ipv6 dup-addr-detect-transmits.. 44
interfaces tunnel ipv6 router-advert...44
interfaces tunnel ipv6 tcp-mss limit...48
interfaces tunnel ipv6 tcp-mss mtu... 49
interfaces tunnel ipv6 tcp-mss mtu-minus...50
interfaces tunnel local-interface...50
interfaces tunnel local-ip..51
interfaces tunnel mtu... 52
interfaces tunnel multicast...53
interfaces tunnel parameters ip ignore-df... 54
interfaces tunnel parameters ip key..55

IP Infusion Inc. Proprietary

iv | Contents

interfaces tunnel parameters ip tos...55
interfaces tunnel parameters ip ttl...56
interfaces tunnel parameters ipv6 encaplimit..57
interfaces tunnel parameters ipv6 flowlabel..58
interfaces tunnel parameters ipv6 hoplimit... 59
interfaces tunnel parameters ipv6 tclass...60
interfaces tunnel path-mtu-discovery-disable..61
interfaces tunnel remote-ip..62
show interfaces tunnel...63

Chapter 7. VXLAN Tunnels.. 64
Overview.. 64

Chapter 8. VXLAN Configuration.. 68
VXLAN Tunnel Configuration.. 68
VXLAN-GPE Tunnel Configuration..70

Chapter 9. VXLAN Commands.. 74
clear vxlan mac... 74
set interfaces tunnel transport multicast-group... 74
set interfaces tunnel transport routing-instance.. 75
set interfaces tunnel vxlan-id...76
set protocols static vxlan-mac interface mac remote-ip.. 76
show vxlan mac...77
show vxlan statistics..78

Chapter 10. VRF support... 79
VRF support for IPsec and GRE.. 79
Command support for VRF routing instances...79

Chapter 11. List of Acronyms... 83

IP Infusion Inc. Proprietary

Chapter 1. Copyright Statement

© 2020 IP Infusion Inc. All Rights Reserved.
This documentation is subject to change without notice. The software described in
this document and this documentation are furnished under a license agreement or
nondisclosure agreement. The software and documentation may be used or copied only
in accordance with the terms of the applicable agreement. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted in any form or any means
electronic or mechanical, including photocopying and recording for any purpose other than
the purchaser's internal use without the written permission of IP Infusion Inc.
IP Infusion Inc.
3965 Freedom Circle, Suite 200
Santa Clara, CA 95054
+1 408-400-1900
http://www.ipinfusion.com/.
For support, questions, or comments via E-mail, contact:
support@ipinfusion.com.
Trademarks:
IP Infusion is a trademark of IP Infusion. All other trademarks, service marks, registered
trademarks, or registered service marks are the property of their respective owners.
Use of certain software included in this equipment is subject to the IP Infusion, Inc. End
User License Agreement at http://www.ipinfusion.com/license. By using the equipment, you
accept the terms of the End User License Agreement.

IP Infusion Inc. Proprietary

http://www.ipinfusion.com/
support@ipinfusion.com
http://www.ipinfusion.com/license

Chapter 2. Preface

Document conventions
The document conventions describe text formatting conventions, command syntax
conventions, and important notice formats used in this document.

Notes, cautions, and warnings
Notes, cautions, and warning statements may be used in this document. They are listed in
the order of increasing severity of potential
hazards.

Note: A Note provides a tip, guidance, or advice, emphasizes important information, or
provides a reference to related information.

Attention: An Attention statement indicates a stronger note, for example, to alert you
when traffic might be interrupted or the device might reboot.

CAUTION: A Caution statement alerts you to situations that can be potentially
hazardous to you or cause damage to hardware, firmware, software, or data.

DANGER: A Danger statement indicates conditions or situations that can be potentially
lethal or extremely hazardous to you. Safety labels are also attached directly to products to
warn of these conditions or situations.

Text formatting conventions
Text formatting conventions such as boldface, italic, or Courier font are used to highlight
specific words or phrases.

Format Description

bold text Identifies command names.
Identifies keywords and operands.

italic text Identifies emphasis.
Identifies variables.
Identifies document titles.

Courier font Identifies CLI output.
Identifies command syntax examples.

Command syntax conventions
Bold and italic text identify command syntax components. Delimiters and operators define
groupings of parameters and their logical relationships.

IP Infusion Inc. Proprietary

Tunnels Configuration Guide | 2 - Preface | 3

Convention Description

bold text Identifies command names, keywords, and command options.

italic text Identifies a variable.

[] Syntax components displayed within square brackets are optional.
Default responses to system prompts are enclosed in square brackets.

{ x | y | z } A choice of required parameters is enclosed in curly brackets separated by vertical bars.
You must select one of the options.

x | y A vertical bar separates mutually exclusive elements.

< > Nonprinting characters, for example, passwords, are enclosed in angle brackets.

... Repeat the previous element, for example, member[member...].

\ Indicates a “soft” line break in command examples. If a backslash separates two lines of
a command input, enter the entire command at the prompt without the backslash.

IP Infusion Inc. Proprietary

Chapter 3. About This Guide

This guide describes how to configure tunneling on DANOS-Vyatta edition.

IP Infusion Inc. Proprietary

Chapter 4. Tunnels Overview

Overview

An IP tunneling protocol is a mechanism for encapsulating a packet from one network
protocol into a packet from another protocol, thereby creating a “tunnel.” The transported
protocol (the “passenger” protocol) is encapsulated by wrapping around it packet
information for the tunneling protocol (the “carrier” protocol). The encapsulated packet is
then forwarded to some destination and stripped of the encapsulating information, and the
original packet is delivered.
The router supports three commonly used tunneling protocols.

• Generic Routing Encapsulation (GRE) tunnels can be used to carry non-IP protocols,
such as Novell IPX, Banyan VINES, AppleTalk, and DECNet. They can also be used
to carry multicast, broadcast, and IPv6 traffic.

• IP-in-IP tunnels can be used to carry only IPv4 traffic.
• Simple Internet Transition (SIT) tunnels can be used to transport IPv6 packets over

IPv4 routing infrastructures.

A logical interface that sends IP packets in a tunneled mode is called a tunnel interface.
A tunnel interface behaves just like any other system interface: you can configure routing
protocols, firewall, NAT, and other features on them, and you can manage them by using
standard operational tools and commands.
Note that GRE, IP-in-IP, and SIT tunnels are unencrypted.

GRE

This section presents the following topics:

• Applications for GRE
• Bridging with GRE
• Multipoint GRE
• Supported standards for GRE

The Generic Routing Encapsulation (GRE) protocol provides a simple general-purpose
mechanism for encapsulating a packet from a wide variety of network protocols to be
forwarded over another protocol. The original packet (the “passenger” packet) can be one
of many network protocols—for example, a multicast packet, an IPv6 packet, or a non-IP
LAN protocol, such as AppleTalk, Banyan VINES, or Novell IPX. The delivery protocol can
be one of a number of routable IP protocols.

IP Infusion Inc. Proprietary

6 | Tunnels Configuration Guide | 4 - Tunnels Overview

A GRE tunnel is stateless, which means that the protocol does not automatically monitor the
state or availability of other endpoints. You can, however, direct the router to monitor the far
end of the tunnel by sending keep-alive messages. If the other end of the tunnel becomes
unavailable, its failure to respond to the messages alerts the router.
GRE uses the IP protocol number 47.

Applications for GRE
You might use GRE in the following situations:

• Connect networks that are running non-IP protocols, such as native LAN protocols,
across the public IP network. Non-IP protocols, such as Novell IPX or Appletalk, are
not routable across an IP network. A GRE tunnel allows you to create a virtual point-
to-point link between two such networks over the public WAN.

• Route IPv6 packets across an IPv4 network, or connect any two similar networks
across an infrastructure that uses different IP addressing.

• Encrypt multicast traffic. IPsec, which is a standard mechanism for providing security
on IP networks, cannot encrypt multicast packets. However, multicast packets can be
encapsulated within a GRE tunnel and then routed over a VPN connection, so that the
encapsulated packets are protected by the IPsec tunnel.

Bridging with GRE
A limitation of a regular GRE-encapsulated tunnel is that the resulting tunnels cannot be
added to a bridge group. GRE for bridging provides this ability. Use GRE for bridging only in
cases in which tunnel interfaces are to be included in a bridge group.
To configure GRE for bridging, use the gre-bridge option of the interfaces tunnel
encapsulation command. For more information about using bridging, refer to Bridging
Configuration Guide.

Multipoint GRE
A GRE tunnel, in its basic form, is essentially point to point. Supporting complex network
topologies (such as hub-and-spoke and spoke-to-spoke technologies) with point-to-point
tunnels is operationally problematic, requiring a full mesh of tunnels. Such a mesh also
consumes a great deal of IP address space, as each pair of tunnel endpoints consumes a
subnet. Multipoint GRE (mGRE) allows multiple destinations (for example, multiple spoke
sites) to be grouped into a single multipoint interface.
To build the direct tunnels, mGRE uses the Next Hop Resolution Protocol (NHRP)
addressing service. The hub maintains an NHRP database and the spokes query the hub
database to obtain the IP addresses of the logical tunnel endpoints.

Note: The IPv6 transport mode for GRE and mGRE is not supported.

IP Infusion Inc. Proprietary

Tunnels Configuration Guide | 4 - Tunnels Overview | 7

Figure 1. Multipoint GRE tunnel

To use multipoint GRE, create a tunnel interface and specify gre-multipoint as the
encapsulation type (by using the interfaces tunnel <tunx> encapsulation <action>
command). The other main difference between a standard GRE configuration and an
mGRE configuration is that, in an mGRE configuration, you do not specify an IP address for
the remote endpoint (that is, you do not set the remote-ip parameter). Other parameters
are configured as for ordinary GRE.
Both multipoint GRE and NHRP are necessary components for dynamic multipoint VPN
(DMVPN), which is typically secured with IP Security (IPsec). DMVPN is discussed in
Bridging Configuration Guide. NHRP is discussed in Services Configuration Guide.

Supported standards for GRE
The IP Infusion Inc. implementation of GRE complies with the following standards:

• RFC 1702: Generic Routing Encapsulation over IPv4 Networks
• RFC 2784: Generic Routing Encapsulation

IP-in-IP
This section presents the following topics:

• Applications for IP-in-IP

IP Infusion Inc. Proprietary

8 | Tunnels Configuration Guide | 4 - Tunnels Overview

• Supported standards for IP-in-IP

The IP-in-IP encapsulation protocol is used to tunnel between networks that have different
capabilities or policies. For example, an IP-in-IP tunnel can be used to forward a multicast
packet across a section of a network (such as an IPsec tunnel) that does not support
multicast routing. An IP-in-IP tunnel can also be used to influence the routing of a packet, or
to deliver a packet to a mobile device that uses Mobile IP.

In IP-in-IP encapsulation, a second IP header is inserted in front of the IP header of the
original packet (the “passenger” packet). The new IP header has as source and destination
addresses the addresses of the tunnel endpoints. The IP header of the payload packet
identifies the original sender and receiver. When the encapsulated packet exits the tunnel,
the outer IP header is stripped off, and the original IP packet is delivered to the final
destination.

Applications for IP-in-IP
IP-in-IP encapsulation is simple and robust. It is useful for connecting IPv4 networks that
otherwise would not be able to communicate; however, it has some limitations:

• IP-in-IP encapsulation does not support broadcast traffic.
• IP-in-IP encapsulation does not support IPv6 traffic.

For forwarding this kind of traffic, GRE may be more appropriate.

Supported standards for IP-in-IP
The IP Infusion Inc. implementation of IP-in-IP complies with the following standard:

• RFC 1853: IP in IP Tunneling

SIT
This section presents the following topics:

• Applications for SIT
• Supported standards for SIT

The Simple Internet Transition (SIT) protocol is a mechanism for tunneling an IPv6 packet
over IPv4 routing infrastructures. A SIT packet employs a dual-IP layer of IPv4 and IPv6 in
hosts and routers for direct interoperability with nodes that implement both protocols. The

IP Infusion Inc. Proprietary

Tunnels Configuration Guide | 4 - Tunnels Overview | 9

encapsulation includes two IPv6 addressing structures that embed IPv4 addresses within
IPv6 addresses.
SIT includes an optional mechanism for translating headers of IPv4 packets into IPv6, and
the headers of IPv6 packets into IPv4. This option allows nodes that implement only IPv6 to
interoperate with nodes that implement only IPv4.

Applications for SIT
The SIT protocol provides mechanisms for transitioning networks from IPv4 to IPv6. The
embedded IPv4 address structure of SIT eliminates the need for tunnel configuration in
most cases.

Supported standards for SIT
The IP Infusion Inc. implementation of SIT complies with the following standard:

• RFC 4213: Basic Transition Mechanisms for IPv6 Hosts and Routers

Securing tunnels
GRE, IP-in-IP, and SIT tunnels are not encrypted; they use a simple password-like key that
is exchanged in clear text in each packet. They are not suitable for a production network
unless otherwise secured. All GRE, IP-in-IP, and SIT tunnels can be protected by an IPsec
tunnel. IPsec is explained in detail in IPsec Site-to-Site VPN Configuration Guide.
Multipoint GRE (mGRE) tunnels can also be secured by using IPsec as part of a Dynamic
Multipoint Virtual Private Network (DMVPN). Refer to DMVPN Configuration Guide for more
information on securing mGRE tunnels.
For information on determining which VPN solution best meets your needs, refer to VPN
Configuration Guide.

DHCP enabled interfaces as local tunnel endpoints
For NHRP spoke routes, you can configure a local tunnel endpoint by assigning a DHCP
or local IP address. If DHCP is used, the hub end of the NHRP tunnel must be able to
reach the DHCP subnet from which the spoke is assigned a local DHCP address. The
encapsulation type must be GRE multipoint.
The local physical interface option is supported only for spoke routers, not hub routers.
NHRP hub routes must be configured using a local IP address.

IP Infusion Inc. Proprietary

10 | Tunnels Configuration Guide | 4 - Tunnels Overview

Using tunnels to extend IPsec capability
An IPsec policy-based tunnel cannot directly route non-IP or multicast protocols. IPsec also
has limitations from an operations point of view.
Using tunnel interfaces with IPsec VPN provides secure, routable tunnel connections
between gateways. These tunnels have some advantages over traditional IPsec policy-
based tunnel mode connections.

• They support standard operational commands, such as show interfaces and show
route.

• They support operational tools, such as traceroute and SNMP.
• They provide dynamic tunnel failover by using routing protocols.
• They simplify IPsec policies and troubleshooting.

IPsec is explained in detail in IPsec Site-to-Site VPN Configuration Guide. See that guide
for more information.
The use of tunnel interfaces with IPsec is documented in the following standard, which
describes the use of IP-in-IP tunnels that is combined with IPsec transport mode encryption
to provide secure routable tunnels:

• RFC 3884: Use of IPsec Transport Mode for Dynamic Routing

Another method of providing a secure routable interface is to use a Virtual Tunnel Interface
(VTI). Refer to IPsec Site-to-Site VPN Configuration Guide for more information.

IP Infusion Inc. Proprietary

Chapter 5. Tunnel Configuration Examples

Before you begin
The following examples have some common elements.

• Any Ethernet (data plane) or loopback interface to be used must already be
configured. The examples do not show these configurations.

• The examples show both Ethernet and loopback interfaces being configured as tunnel
endpoints. Configuring a loopback interface as the tunnel endpoint is advantageous
in systems in which multiple paths between tunnel endpoints exist because the tunnel
does not fail if an Ethernet interface fails.

Refer to LAN Interfaces Configuration Guide for information on configuring Ethernet and
loopback interfaces.

Note: In the router, a data plane interface is an abstraction that represents the
underlying physical or virtual Ethernet interface of the system. The terms Ethernet interface
and data plane interface are synonymous in this guide.

GRE tunnel connecting remote networks
This section presents a sample configuration for a basic GRE tunnel between the WEST
and EAST router. First, WEST is configured, and then EAST.
This basic tunnel is not protected by a key, which means that it is not secure and would not
be suitable for a production network unless otherwise secured.
When you finish the steps, these systems are configured as shown in the following figure. In
the figure, note that the remote endpoint must be reachable.

Figure 2. Basic GRE tunnel

IP Infusion Inc. Proprietary

12 | Tunnels Configuration Guide | 5 - Tunnel Configuration Examples

Configure WEST
The GRE tunnel in the sample configuration extends from WEST through the wide-area
network to EAST. In this example, you create the tunnel interface and the tunnel endpoint
on WEST.

• The tun0 tunnel interface on WEST is assigned the 10.20.20.1 IP address on
10.20.20.0/24 network.

• The source IP address of the tunnel endpoint (local-ip) is the same as the address
associated with the loopback interface (lo) in this example.

• The IP address of the other end of the tunnel (remote-ip) is the address of the
loopback interface on EAST.

• A static route is created to specify how to get to the remote LAN through the tunnel.

The following table shows how to create the tunnel interface and the tunnel endpoint on
WEST. To do this, perform the following steps on WEST in configuration mode.

Table 1. Creating a basic GRE tunnel endpoint on WEST
Step Command

Cre-
ate
the
tun-
nel
in-
ter-
face,
and
spec-
ify
the
IP
ad-
dress
to
be
as-
soci-
ated
with
it.

vyatta@WEST# set interfaces tunnel tun0 address 10.20.20.1/24

Spec-
ify
the
source
IP
ad-
dress
for
the
tun-
nel.

vyatta@WEST# set interfaces tunnel tun0 local-ip 10.10.1.1

Spec-
ify
the
IP
ad-
dress

vyatta@WEST# set interfaces tunnel tun0 remote-ip 10.10.1.2

IP Infusion Inc. Proprietary

Tunnels Configuration Guide | 5 - Tunnel Configuration Examples | 13

Table 1. Creating a basic GRE tunnel endpoint on WEST (continued)
Step Command

of
the
oth-
er
end
of
the
tun-
nel.

Spec-
ify
the
en-
cap-
su-
la-
tion
mode
for
the
tun-
nel.

vyatta@WEST# set interfaces tunnel tun0 encapsulation gre

As-
sign
a
brief
de-
scrip-
tion
to
the
tun-
nel
in-
ter-
face.

vyatta@WEST# set interfaces tunnel tun0 description “GRE tunnel to EAST”

Com-
mit
the
con-
fig-
ura-
tion.

vyatta@WEST# commit

View
the
con-
fig-
ura-
tion.

vyatta@WEST# show interfaces tunnel tun0
 address 10.20.20.1/24
 description “Tunnel to EAST”
 encapsulation gre
 local-ip 10.10.1.1
 remote-ip 10.10.1.2

Cre-
ate
a
sta-
tic
route
to
ac-
cess
the
re-
mote
sub-

vyatta@WEST# set protocols static route 192.168.60.0/24 next-hop 10.20.20.2

IP Infusion Inc. Proprietary

14 | Tunnels Configuration Guide | 5 - Tunnel Configuration Examples

Table 1. Creating a basic GRE tunnel endpoint on WEST (continued)
Step Command

net
through
the
tun-
nel.

Com-
mit
the
con-
fig-
ura-
tion.

vyatta@WEST# commit

View
the
con-
fig-
ura-
tion.

vyatta@WEST# show protocols
 static {
 route 192.168.60.0/24 {
 next-hop 10.20.20.2 {
 }
 }
 }

Configure EAST
In this example, you create the tunnel endpoint on EAST.

• The tun0 tunnel interface on EAST is assigned the 10.20.20.2 IP address on
10.20.20.0/24 network.

• The source IP address of the tunnel endpoint (local-ip) is the same as the address
associated with the loopback interface (lo) in this example.

• The IP address of the other end of the tunnel (remote-ip) is the address of the
loopback interface on WEST.

• A static route is created to specify how to get to the remote LAN through the tunnel.

The following table shows how to create the tunnel endpoint on EAST. To do this, perform
the following steps on EAST in configuration mode.

Table 2. Create a basic tunnel endpoint on EAST
Step Command

Cre-
ate
the
tun-
nel
in-
ter-
face,
and
spec-
ify
the
IP
ad-
dress
to

vyatta@EAST# set interfaces tunnel tun0 address 10.20.20.2/24

IP Infusion Inc. Proprietary

Tunnels Configuration Guide | 5 - Tunnel Configuration Examples | 15

Table 2. Create a basic tunnel endpoint on EAST (continued)
Step Command

be
as-
soci-
ated
with
it.

Spec-
ify
the
source
IP
ad-
dress
for
the
tun-
nel.

vyatta@EAST# set interfaces tunnel tun0 local-ip 10.10.1.2

Spec-
ify
the
IP
ad-
dress
of
the
oth-
er
end
of
the
tun-
nel.

vyatta@EAST# set interfaces tunnel tun0 remote-ip 10.10.1.1

Spec-
ify
the
en-
cap-
su-
la-
tion
mode
for
the
tun-
nel.

vyatta@EAST# set interfaces tunnel tun0 encapsulation gre

As-
sign
a
brief
de-
scrip-
tion
to
the
tun-
nel
in-
ter-
face.

vyatta@EAST# set interfaces tunnel tun0 description “GRE tunnel to WEST”

Com-
mit
the

vyatta@EAST# commit

IP Infusion Inc. Proprietary

16 | Tunnels Configuration Guide | 5 - Tunnel Configuration Examples

Table 2. Create a basic tunnel endpoint on EAST (continued)
Step Command

con-
fig-
ura-
tion.

View
the
con-
fig-
ura-
tion.

vyatta@EAST# show interfaces tunnel tun0
 address 10.20.20.2/24
 description “Tunnel to WEST”
 encapsulation gre
 local-ip 10.10.1.2
 remote-ip 10.10.1.1

Cre-
ate
a
sta-
tic
route
to
ac-
cess
the
re-
mote
sub-
net
through
the
tun-
nel.

vyatta@EAST# set protocols static route 192.168.40.0/24 next-hop 10.20.20.1

Com-
mit
the
con-
fig-
ura-
tion.

vyatta@EAST# commit

View
the
con-
fig-
ura-
tion.

vyatta@EAST# show protocols
 static {
 route 192.168.40.0/24 {
 next-hop 10.20.20.1 {
 }
 }
 }

A GRE tunnel with authentication
In this section, some additional parameters are specified for the tunnel interfaces that are
defined in the previous section.

• A key is specified so that the hosts can authenticate each other. This key must match
on the two endpoints. Note that authentication is not encryption.

• The time to live (TTL), Type of Service (ToS), and maximum transmission unit (MTU)
are specified for each endpoint.

• A firewall rule set is applied to each tunnel interface.

IP Infusion Inc. Proprietary

Tunnels Configuration Guide | 5 - Tunnel Configuration Examples | 17

Configure WEST
Table 3: Adding values to the GRE tunnel endpoint on WEST shows how to specify
additional values for the tunnel endpoint on WEST that is created in Configure WEST.

• A key, 101088, is provided as a password-like mechanism. The key on each side
must match.

• The TTL for packets is set to 220, ToS field is set to 55, and MTU for packets is set to
1460.

• Two firewall rule sets are applied to the tunnel interface:
◦ The tun0-fw-in rule set is applied to packets ingressing through the tunnel

interface.
◦ The tun0-fw-out rule set is applied to packets egressing through the tunnel

interface.
In the example, it is assumed that these firewall rule sets have already been defined.
For information on defining firewall rule sets, refer to Firewall Configuration Guide.

To configure the GRE tunnel endpoint, perform the following steps on WEST in
configuration mode.

Table 3. Adding values to the GRE tunnel endpoint on WEST
Step Command

Pro-
vide
the
au-
then-
tica-
tion
key.

vyatta@WEST# set interfaces tunnel tun0 parameters ip key 101088

Set
the
TTL.

vyatta@WEST# set interfaces tunnel tun0 parameters ip ttl 220

Set
the
ToS.

vyatta@WEST# set interfaces tunnel tun0 parameters ip tos 55

Set
the
MTU.

vyatta@WEST# set interfaces tunnel tun0 mtu 1460

Ap-
ply
the
fire-
wall
rule
set
for
in-
com-
ing
pack-
ets.

vyatta@WEST# set interfaces tunnel tun0 firewall in name tun0-fw-in

IP Infusion Inc. Proprietary

18 | Tunnels Configuration Guide | 5 - Tunnel Configuration Examples

Table 3. Adding values to the GRE tunnel endpoint on WEST (continued)
Step Command

Ap-
ply
the
fire-
wall
rule
set
for
out-
go-
ing
pack-
ets.

vyatta@WEST# set interfaces tunnel tun0 firewall out name tun0-fw-out

Com-
mit
the
con-
fig-
ura-
tion.

vyatta@WEST# commit

View
the
con-
fig-
ura-
tion.

vyatta@WEST# show interfaces tunnel tun0
 address 10.20.20.1/24
 description “Tunnel to EAST”
 encapsulation gre
 firewall
 in {
 name tun0-fw-in
 }
 out {
 name tun0-fw-out
 }
 }
 local-ip 10.10.1.1
 mtu 1460
 parameters {
 ip {
 key 101088
 tos 55
 ttl 220
 }
}
 remote-ip 10.10.1.2

Configure EAST
Table 4: Adding values to the GRE tunnel endpoint on EAST shows how to specify
additional values for the tunnel endpoint on EAST that is created in Configure EAST.

• A key 101088 is provided as a password-like mechanism. This value matches the key
configured for WEST.

• The TTL for packets is set to 220, ToS field is set to 55, and MTU for packets is set to
1460.

• Two firewall rule sets are applied to the tunnel interface:
◦ The tun0-fw-in rule set is applied to packets ingressing through the tunnel

interface.
◦ The tun0-fw-out rule set is applied to packets egressing through the tunnel

interface.

IP Infusion Inc. Proprietary

Tunnels Configuration Guide | 5 - Tunnel Configuration Examples | 19

In the example, it is assumed that these firewall rule sets have already been defined.
For information on defining firewall rule sets, refer to Firewall Configuration Guide.

To configure the GRE tunnel endpoint, perform the following steps on EAST in configuration
mode.

Table 4. Adding values to the GRE tunnel endpoint on EAST
Step Command

Pro-
vide
the
au-
then-
tica-
tion
key.

vyatta@EAST# set interfaces tunnel tun0 parameters ip key 101088

Set
the
TTL.

vyatta@EAST# set interfaces tunnel tun0 parameters ip ttl 220

Set
the
ToS.

vyatta@EAST# set interfaces tunnel tun0 parameters ip tos 55

Set
the
MTU.

vyatta@EAST# set interfaces tunnel tun0 mtu 1460

Ap-
ply
the
fire-
wall
rule
set
for
in-
com-
ing
pack-
ets.

vyatta@EAST# set interfaces tunnel tun0 firewall in name tun0-fw-in

Ap-
ply
the
fire-
wall
rule
set
for
out-
go-
ing
pack-
ets.

vyatta@EAST# set interfaces tunnel tun0 firewall out name tun0-fw-out

Com-
mit
the
con-
fig-
ura-
tion.

vyatta@EAST# commit

IP Infusion Inc. Proprietary

20 | Tunnels Configuration Guide | 5 - Tunnel Configuration Examples

Table 4. Adding values to the GRE tunnel endpoint on EAST (continued)
Step Command

View
the
con-
fig-
ura-
tion.

vyatta@EAST# show interfaces tunnel tun0
 address 10.20.20.2/24
 description “Tunnel to WEST”
 encapsulation gre
 firewall
 in {
 name tun0-fw-in
 }
 out {
 name tun0-fw-out
 }
 }
 local-ip 10.10.1.2
 mtu 1460
 parameters {
 ip {
 key 101088
 tos 55
 ttl 220
 }
}
 remote-ip 10.10.1.1

Multipoint GRE tunnels
This section presents a sample configuration for a basic multipoint GRE (mGRE) tunnel
between the HUB and SPOKE1 router and one between HUB and SPOKE2.
The configuration shown in this example also provides for a dynamic tunnel to be created
between SPOKE1 and SPOKE2, as required. The ability to form a dynamic tunnel directly
between the spokes derives from the use of mGRE and Next Hop Resolution Protocol
(NHRP). This configuration can be expanded by creating additional spoke nodes with
no change to the HUB configuration. For more information on NHRP, refer to Services
Configuration Guide.
Note that spoke-to-spoke traffic does not pass through the HUB. Note also that a typical
production environment would use a routing protocol such as OSPF rather than static
routes, which are used in this example.
The basic mGRE tunnels presented in this example are not protected by IPsec encryption,
which means they are not secure and would not be suitable for a production network unless
otherwise secured. Dynamic multipoint VPN (DMVPN) uses mGRE, NHRP, and IPsec to
provide a secure hub-and-spoke tunnel environment. For more information on creating a
DMVPN environment, see DMVPN Configuration Guide.

When this example is completed, the network will be configured as shown in the following
figure.

IP Infusion Inc. Proprietary

Tunnels Configuration Guide | 5 - Tunnel Configuration Examples | 21

Figure 3. Basic mGRE tunnel network

Configure HUB
Two multipoint GRE tunnels are configured. One is between HUB and SPOKE1. The other
is between HUB and SPOKE2. The first step is to configure HUB.
In this example, you create the tunnel interface and the tunnel endpoint on HUB.

• The tunnel interface tun0 on HUB is assigned the IP address 200.0.0.99 on subnet
200.0.0.0/24.

• The source IP address of the tunnel endpoint (the local-ip) is the same as the
address associated with the local Ethernet interface in this example (192.0.2.99/24).

• A static route is created to specify how to get to the remote LANs through the tunnel.

Table 5. Creating a multipoint GRE endpoint on HUB
Step Command

Create the tunnel interface, and specify the IP address to be associated
with it.

vyatta@HUB# set interfaces tunnel tun0 address
 200.0.0.99/24

Specify the encapsulation mode for the tunnel.
vyatta@HUB# set interfaces tunnel tun0
 encapsulation gre-multipoint

Specify the source IP address for the tunnel. This address is the IP ad-
dress of the physical interface for the tunnel endpoint.

vyatta@HUB# set interfaces tunnel tun0 local-ip
 192.0.2.99

Allow multicast protocols (for example, routing protocols) to be carried
over the tunnel.

IP Infusion Inc. Proprietary

22 | Tunnels Configuration Guide | 5 - Tunnel Configuration Examples

Table 5. Creating a multipoint GRE endpoint on HUB (continued)
Step Command

vyatta@HUB# set interfaces tunnel tun0 multicast
 enable

Specify an authentication key for the NHRP network.
vyatta@HUB# set interfaces tunnel tun0 nhrp
 authentication pre-shared-secret NET123

Specify the hold time for the NHRP network.
vyatta@HUB# set interfaces tunnel tun0 nhrp
 holding-time 300

Specify that multicast packets are to be forwarded to all directly connected
peers.

vyatta@HUB# set interfaces tunnel tun0 nhrp
 multicast parameters dynamic

Specify that Cisco-style NHRP Traffic Indication packets are to be sent.
vyatta@HUB# set interfaces tunnel tun0 nhrp
 redirect

Specify an authentication key for the tunnel.
vyatta@HUB# set interfaces tunnel tun0
 parameters ip key 1

Commit the configuration.
vyatta@HUB# commit

View the configuration.
vyatta@HUB# show interfaces tunnel
 tun0 {
 address 200.0.0.99/24
 encapsulation gre-multipoint
 local-ip 192.0.2.99
 multicast enable
 nhrp {
 authentication NET123
 holding-time 300
 multicast {
 parameters dynamic
 }
 redirect
 }
 parameters {
 ip {
 key 1
 }
 }
 }

Create a static route to access the remote LAN behind SPOKE1 through
the tunnel.

vyatta@WEST# set protocols static route
 192.168.1.0/24 next-hop 200.0.0.1

Create a static route to access the remote LAN behind SPOKE2 through
the tunnel.

vyatta@WEST# set protocols static route
 192.168.2.0/24 next-hop 200.0.0.2

Commit the configuration.
vyatta@WEST# commit

View the configuration.
vyatta@WEST# show protocols
 static {
 route 192.168.1.0/24 {
 next-hop 200.0.0.1 {
 }
 }
 route 192.168.2.0/24 {
 next-hop 200.0.0.2 {
 }
 }
 }

IP Infusion Inc. Proprietary

Tunnels Configuration Guide | 5 - Tunnel Configuration Examples | 23

Configure SPOKE1
The second step is to configure SPOKE1.
In this example, you create the tunnel interface and the tunnel endpoint on SPOKE1.

• The tunnel interface tun0 on HUB is assigned the IP address 200.0.0.1 on subnet
200.0.0.0/24.

• The source IP address of the tunnel endpoint (the local-ip) is the same as the
address associated with the local Ethernet interface in this example (192.0.2.1/24).

• A static route is created to specify how to get to the remote LANs through the tunnel.

Table 6. Creating a multipoint GRE endpoint on SPOKE1
Step Command

Create the tunnel interface, and specify the IP address to be associated
with it.

vyatta@SPOKE1# set interfaces tunnel tun0 address
 200.0.0.1/24

Specify the encapsulation mode for the tunnel.
vyatta@SPOKE1# set interfaces tunnel tun0
 encapsulation gre-multipoint

Specify the source IP address for the tunnel. This address is the IP ad-
dress of the physical interface for the tunnel endpoint.

vyatta@SPOKE1# set interfaces tunnel tun0 local-ip
 192.0.2.1

Allow multicast protocols (for example, routing protocols) to be carried
over the tunnel.

vyatta@SPOKE1# set interfaces tunnel tun0
 multicast enable

Specify an authentication key for the NHRP network.
vyatta@SPOKE1# set interfaces tunnel tun0 nhrp
 authentication pre-shared-secret NET123

Map the IP address of the tunnel interface of the Hub to its physical IP
address.

vyatta@SPOKE1# set interfaces tunnel tun0 nhrp map
 200.0.0.99/24 nbma-address 192.0.2.99

Specify that this spoke should register itself automatically on startup.
vyatta@SPOKE1# set interfaces tunnel tun0 nhrp map
 200.0.0.99/24 register

Specify that multicast packets are to be repeated to each statically con-
figured next hop.

vyatta@SPOKE1# set interfaces tunnel tun0 nhrp
 multicast parameters nhs

Specify that Cisco-style NHRP Traffic Indication packets are to be sent.
vyatta@SPOKE1# set interfaces tunnel tun0 nhrp
 redirect

Specify that shortcut routes can be created.
vyatta@SPOKE1# set interfaces tunnel tun0 nhrp
 shortcut

Specify an authentication key for the tunnel.
vyatta@SPOKE1# set interfaces tunnel tun0
 parameters ip key 1

Commit the configuration.
vyatta@SPOKE1# commit

View the configuration.
vyatta@SPOKE1# show interfaces tunnel
 tun0 {
 address 200.0.0.1/24

IP Infusion Inc. Proprietary

24 | Tunnels Configuration Guide | 5 - Tunnel Configuration Examples

Table 6. Creating a multipoint GRE endpoint on SPOKE1 (continued)
Step Command

 encapsulation gre-multipoint
 local-ip 192.0.2.1
 multicast enable
 nhrp {
 authentication NET123
 map 200.0.0.99/24 {
 nbma-address 192.0.2.99
 register
 }
 multicast {
 parameters nhs
 }
 redirect
 shortcut
 }
 parameters {
 ip {
 key 1
 }
 }
 }

Create a static route to access the remote LAN behind HUB through the
tunnel.

vyatta@WEST# set protocols static route
 192.168.99.0/24 next-hop 200.0.0.99

Create a static route to access the remote LAN behind SPOKE2 through
the tunnel.

vyatta@WEST# set protocols static route
 192.168.2.0/24 next-hop 200.0.0.2

Commit the configuration.
vyatta@WEST# commit

View the configuration.
vyatta@WEST# show protocols
 static {
 route 192.168.99.0/24 {
 next-hop 200.0.0.99 {
 }
 }
 route 192.168.2.0/24 {
 next-hop 200.0.0.2 {
 }
 }
 }

Configure SPOKE2
The final step is to configure SPOKE2.
In this example, you create the tunnel interface and the tunnel endpoint on SPOKE2.

• The tunnel interface tun0 on HUB is assigned the IP address 200.0.0.2 on subnet
200.0.0.0/24.

• The source IP address of the tunnel endpoint (the local-ip) is the same as the
address associated with the local Ethernet interface in this example (192.0.2.33/24).

• A static route is created to specify how to get to the remote LANs through the tunnel.

Table 7. Creating a multipoint GRE endpoint on SPOKE2
Step Command

Create the tunnel interface, and specify the IP address to be associated
with it.

vyatta@SPOKE2# set interfaces tunnel tun0 address
 200.0.0.2/24

IP Infusion Inc. Proprietary

Tunnels Configuration Guide | 5 - Tunnel Configuration Examples | 25

Table 7. Creating a multipoint GRE endpoint on SPOKE2 (continued)
Step Command

Specify the encapsulation mode for the tunnel.
vyatta@SPOKE2# set interfaces tunnel tun0
 encapsulation gre-multipoint

Specify the source IP address for the tunnel. This address is the IP ad-
dress of the physical interface for the tunnel endpoint.

vyatta@SPOKE2# set interfaces tunnel tun0 local-ip
 192.0.2.33

Allow multicast protocols (for example, routing protocols) to be carried
over the tunnel.

vyatta@SPOKE2# set interfaces tunnel tun0
 multicast enable

Specify an authentication key for the NHRP network.
vyatta@SPOKE2# set interfaces tunnel tun0 nhrp
 authentication pre-shared-secret NET123

Map the IP address of the tunnel interface of the Hub to its physical IP
address.

vyatta@SPOKE2# set interfaces tunnel tun0 nhrp map
 200.0.0.99/24 nbma-address 192.0.2.99

Specify that this spoke should register itself automatically on startup.
vyatta@SPOKE2# set interfaces tunnel tun0 nhrp map
 200.0.0.99/24 register

Specify that multicast packets are to be repeated to each statically con-
figured next hop.

vyatta@SPOKE2# set interfaces tunnel tun0 nhrp
 multicast parameters nhs

Specify that Cisco-style NHRP Traffic Indication packets are to be sent.
vyatta@SPOKE2# set interfaces tunnel tun0 nhrp
 redirect

Specify that shortcut routes can be created.
vyatta@SPOKE2# set interfaces tunnel tun0 nhrp
 shortcut

Specify an authentication key for the tunnel.
vyatta@SPOKE2# set interfaces tunnel tun0
 parameters ip key 1

Commit the configuration.
vyatta@SPOKE2# commit

View the configuration.
vyatta@SPOKE2# show interfaces tunnel
 tun0 {
 address 200.0.0.2/24
 encapsulation gre-multipoint
 local-ip 192.0.2.33
 multicast enable
 nhrp {
 authentication NET123
 map 200.0.0.99/24 {
 nbma-address 192.0.2.99
 register
 }
 multicast {
 parameters nhs
 }
 redirect
 shortcut
 }
 parameters {
 ip {
 key 1
 }
 }
 }

Create a static route to access the remote LAN behind HUB through the
tunnel.

vyatta@WEST# set protocols static route
 192.168.99.0/24 next-hop 200.0.0.99

IP Infusion Inc. Proprietary

26 | Tunnels Configuration Guide | 5 - Tunnel Configuration Examples

Table 7. Creating a multipoint GRE endpoint on SPOKE2 (continued)
Step Command

Create a static route to access the remote LAN behind SPOKE1 through
the tunnel.

vyatta@WEST# set protocols static route
 192.168.1.0/24 next-hop 200.0.0.1

Commit the configuration.
vyatta@WEST# commit

View the configuration.
vyatta@WEST# show protocols
 static {
 route 192.168.99.0/24 {
 next-hop 200.0.0.99 {
 }
 }
 route 192.168.1.0/24 {
 next-hop 200.0.0.1 {
 }
 }
 }

Tunneling IPv6 traffic in IPv4 with SIT
Figure 4: Tunneling IPv6 traffic in IPv4 shows a network with four nodes. Each of R1 and R2
has an interface that is configured as IPv6 and an interface that is configured as IPv4. The
figure shows configuration of the nodes by using tunneling over IPv4 to enable R3 and R4
to communicate through R1 and R2.

IP Infusion Inc. Proprietary

Tunnels Configuration Guide | 5 - Tunnel Configuration Examples | 27

Figure 4. Tunneling IPv6 traffic in IPv4

In the figure, all interfaces are configured with the IP addresses as shown, and R1 and R2
have forwarding enabled.

Create a SIT tunnel
R1 and R2 must be configured to create a tunnel between them to encapsulate the IPv6
traffic. To configure R1 to create a tunnel that uses SIT encapsulation between 15.0.0.1 and
15.0.0.2, perform the following steps in configuration mode.

Table 8. Configuring a tunnel interface on R1
Step Command

Create a tunnel with SIT encapsulation.
vyatta@R1# set interfaces tunnel tun0 encapsulation sit

Specify the local IP address.
vyatta@R1# set interfaces tunnel tun0 local-ip 15.0.0.1

Specify the remote IP address.
vyatta@R1# set interfaces tunnel tun0 remote-ip 15.0.0.2

Configure the IPv6 address on the interface.
vyatta@R1# set interfaces tunnel tun0 address 2001:db8:2::1/64

Commit the changes.

IP Infusion Inc. Proprietary

28 | Tunnels Configuration Guide | 5 - Tunnel Configuration Examples

Table 8. Configuring a tunnel interface on R1 (continued)
Step Command

vyatta@R1# commit

To configure R2 to create a tunnel that uses SIT encapsulation between 15.0.0.2 and
15.0.0.1, perform the following steps in configuration mode.

Table 9. Configuring a tunnel interface on R2
Step Command

Create a tunnel with SIT encapsulation.
vyatta@R2# set interfaces tunnel tun0 encapsulation sit

Specify the local IP address.
vyatta@R2# set interfaces tunnel tun0 local-ip 15.0.0.2

Specify the remote IP address.
vyatta@R2# set interfaces tunnel tun0 remote-ip 15.0.0.1

Configure the IPv6 address on the interface.
vyatta@R2# set interfaces tunnel tun0 address 2001:db8:2::2/64

Commit the changes.
vyatta@R2# commit

At this point, connectivity exists between R1 and R2 across the tunnel interface. The
following example shows the capture of a ping from 2001:db8:2::1 to 2001:db8:2::2. Notice
that the IPv6 ping packet is encapsulated by the IPv4 header.

Capture of a ping

Frame 22 (138 bytes on wire, 138 bytes captured)
Ethernet II, Src: Vmware_d6:81:80 (00:0c:29:d6:81:80), Dst: Vmware_4e:fc:b6
 (00:0c:29:4e:fc:b6)
 Destination: Vmware_4e:fc:b6 (00:0c:29:4e:fc:b6)
 Source: Vmware_d6:81:80 (00:0c:29:d6:81:80)
 Type: IP (0x0800)
Internet Protocol, Src: 15.0.0.1 (15.0.0.1), Dst: 15.0.0.2 (15.0.0.2)
 Version: 4
 Header length: 20 bytes
 Differentiated Services Field: 0x00 (DSCP 0x00: Default; ECN: 0x00)
 Total Length: 124
 Identification: 0x0000 (0)
 Flags: 0x04 (Don't Fragment)
 Fragment offset: 0
 Time to live: 255
 Protocol: IPv6 (0x29)
 Header checksum: 0x5d56 [correct]
 Source: 15.0.0.1 (15.0.0.1)
 Destination: 15.0.0.2 (15.0.0.2)
Internet Protocol Version 6
 0110 = Version: 6

IP Infusion Inc. Proprietary

Tunnels Configuration Guide | 5 - Tunnel Configuration Examples | 29

 0000 0000 = Traffic class: 0x00000000
 0000 0000 0000 0000 0000 = Flowlabel: 0x00000000
 Payload length: 64
 Next header: ICMPv6 (0x3a)
 Hop limit: 64
 Source: 2001:db8:2::1 (2001:db8:2::1)
 Destination: 2001:db8:2::2 (2001:db8:2::2)
Internet Control Message Protocol v6
 Type: 129 (Echo reply)
 Code: 0
 Checksum: 0x2fca [correct]
 ID: 0xe825
 Sequence: 0x001b
 Data (56 bytes)
0000 9b a8 25 49 58 0c 07 00 08 09 0a 0b 0c 0d 0e 0f ..%IX...........
0010 10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f
0020 20 21 22 23 24 25 26 27 28 29 2a 2b 2c 2d 2e 2f !"#$%&'()*+,-./
0030 30 31 32 33 34 35 36 37 01234567

IP Infusion Inc. Proprietary

Chapter 6. Tunnel Commands

Related tunnel commands
This chapter presents the commands for configuring GRE and IP-in-IP tunnels.
Commands for using other system features with tunnel interfaces are described in the
following noted guides.

Related Commands Documented Elsewhere

Bridging Commands for configuring bridge groups on tunnel interfaces
are described in Bridging Configuration Guide.

Firewall Commands for configuring firewall on tunnel interfaces are de-
scribed in Firewall Configuration Guide.

IGMP Commands for configuring IGMP and MLD parameters on tun-
nel interfaces are described in IGMP Configuration Guide.

Multicast Commands for configuring multicast IP parameters on tunnel in-
terfaces are described in Multicast Routing Configuration Guide.

NHRP Commands for configuring NHRP parameters on tunnel inter-
faces are described in Services Configuration Guide.

OSPF Commands for configuring OSPF parameters on tunnel inter-
faces are described in OSPF Configuration Guide.

OSPFv3 Commands for configuring OSPFv3 parameters on tunnel inter-
faces are described in OSPFv3 Configuration Guide.

PIM Commands for configuring PIM parameters on tunnel interfaces
are described in PIM Configuration Guide.

Policy-based routing Commands for configuring policy-based routing on tunnel in-
terfaces are described in Policy-based Routing Configuration
Guide.

QoS Commands for configuring quality of service on tunnel inter-
faces are described in QoS Configuration Guide.

RIP Commands for configuring RIP parameters on tunnel interfaces
are described in RIP Configuration Guide.

RIPng Commands for configuring the RIPng on tunnel interfaces are
described in RIPng Configuration Guide.

clear interfaces tunnel counters
Clears statistics for a tunnel interface.

clear interfaces tunnel { counters | tunx counters }

tunx
Clears information for the specified tunnel interface. The range is tun0 through tunx, where
x is a nonnegative integer.

Operational mode

IP Infusion Inc. Proprietary

Tunnels Configuration Guide | 6 - Tunnel Commands | 31

Use this command to clear statistics for a tunnel interface.

interfaces tunnel
Creates a tunnel interface for encapsulating traffic.

set interfaces tunnel tunx

delete interfaces tunnel [tunx]

show interfaces tunnel

tunx
An identifier for the tunnel interface that you are creating. The identifier ranges from tun0
through tunx, where x is a nonnegative integer.

Configuration mode

interfaces {
 tunnel tunx {
 }
}

Use this command to create a tunnel interface for encapsulating traffic.

Use the set form of this command to create a tunnel interface.
Use the delete form of this command to delete a tunnel interface.
Use the show form of this command to display the tunnel configuration.

interfaces tunnel address
Assigns a primary or secondary IP address to a tunnel interface.

set interfaces tunnel tunx address { ipv4_address | ipv6_address }

delete interfaces tunnel tunx address [ipv4_address | ipv6_address]

show interfaces tunnel tunx address

tunx
The identifier of a tunnel interface. The identifier ranges from tun0 through tunx, where x is
a nonnegative integer.

ipv4_address
An IPv4 address on the interface. The format of the address is ip_address/prefix (for
example, 192.168.1.77/24).

IP Infusion Inc. Proprietary

32 | Tunnels Configuration Guide | 6 - Tunnel Commands

You can define multiple IPv4 addresses for a single interface by creating multiple address
configuration nodes.

ipv6_address
An IPv6 address on the interface. The format of the address is ipv6_address/prefix (for
example, 2001:db8:1234::/48).
You can define multiple IPv6 addresses for a single interface by creating multiple address
configuration nodes.

Configuration mode

interfaces {
 tunnel tunx {
 address
 ipv4_address
 ipv6_address
 }
}

Use this command to assign a primary or secondary IP address to a tunnel interface. At
least one address must be configured for the tunnel interface to function.
Note that you cannot use the set form of this command to change an existing address; you
must delete the address to be changed and create a new one.
Use the set form of this command to create an IP address for a tunnel interface.
Use the delete form of this command to delete an IP network address for a tunnel interface.
At least one address must remain for the tunnel to function.
Use the show form of this command to display address configuration for a tunnel interface.

interfaces tunnel bfd template
Specifies a bidirectional forwarding detection (BFD) template for a specified interface.

set interfaces tunnel tunx bfd template template-name

delete interfaces tunnel tunx bfd template template-name

show interfaces tunnel tunnel tunx bfd template

tunx
The identifier of a tunnel interface. The identifier ranges from tun0 through tunx, where x is
a nonnegative integer.

template-name
The name of a BFD template to enable add or delete.

Configuration mode

IP Infusion Inc. Proprietary

Tunnels Configuration Guide | 6 - Tunnel Commands | 33

interfaces {
 tunnel tunx {
 bfd {
 template my_template
 }
 }
 }

Use the set form of this command to specify the name of a BFD template.
Use the delete form of this command to delete a specified BFD template.
Use the show form of this command to display the BFD configuration for the tunnel.

interfaces tunnel bridge-group
Adds a specified tunnel interface to a bridge group and sets parameters for the tunnel.

set interfaces tunnel tunx bridge-group { admin-edge | auto-edge | bpdu-guard |
bridge bridge-name | cost cost | network-port | point-to-point ptp-op-status |
priority priority | restrict-tcn | root-block }

delete interfaces tunnel tunx bridge-group

show interfaces tunnel tunx bridge-group

GRE is the encapsulation type.

tunx
The identifier of a tunnel interface. The identifier ranges from tun0 through tunx, where x is
a nonnegative integer.

admin-edge
Enables the admin-edge mode for Spanning Tree Protocol (STP).

auto-edge
Enables the auto-edge mode for STP.

bpdu-guard
Enables spanning tree BPDU guard.

bridge bridge-name
Name to identify the bridge group.

cost cost
Spanning tree port cost (1-65535).

network-port
Enables Spanning Tree uni-directional link detection.

point-to-point ptp-op-status
Sets the point-to-point operational status. The status is either on or off.

IP Infusion Inc. Proprietary

34 | Tunnels Configuration Guide | 6 - Tunnel Commands

priority priority
Sets the port priority for STP. The priority is a number that ranges from 0 through 15.

restrict-tcn
Restricts propagation of Spanning Tree topology change notifications.

root-block
Restricts the port's ability to take the spanning tree root role.

Configuration mode

interfaces {
 tunnel tunx {
 bridge group {
 admin-edge
 auto-edge
 bpdu-guard
 bridge bridge-name
 cost cost
 network-port
 point-to-point ptp-op-status
 priority priority
 restrict-tcn
 root-block
 }
 }
}

Use this command to add a tunnel interface to a bridge group.
Use the set form of this command to configure the tunnel interface to a bridge group.
Use the delete form of this command to remove the tunnel interface.
Use the show form of this command to display the current configuration of the tunnel
interface.

interfaces tunnel description
Describes a tunnel interface.

set interfaces tunnel tunx description description

delete interfaces tunnel tunx description

show interfaces tunnel tunx description

tunx
The identifier of a tunnel interface. The identifier ranges from tun0 through tunx, where x is
a nonnegative integer.

IP Infusion Inc. Proprietary

Tunnels Configuration Guide | 6 - Tunnel Commands | 35

description
A brief description of the interface. The default description is an empty character string.

Configuration mode

interfaces {
 tunnel tunx {
 description description
 }
}

If the description contains spaces, it must be enclosed in double quotation marks.
Use the set form of this command to briefly describe a tunnel interface.
Use the delete form of this command to delete the description of a tunnel interface.
Use the show form of this command to display the description of a tunnel interface.

interfaces tunnel disable
Disables a tunnel interface without discarding configuration.

set interfaces tunnel tunx disable

delete interfaces tunnel tunx disable

show interfaces tunnel tunx

A tunnel interface is enabled.

tunx
The identifier of a tunnel interface. The identifier ranges from tun0 through tunx, where x is
a nonnegative integer.

Configuration mode

interfaces {
 tunnel tunx {
 disable
 }
}

Use the set form of this command to disable a tunnel interface without discarding its
configuration.
Use the delete form of this command to enable a tunnel interface.
Use the show form of this command to display a tunnel interface.

IP Infusion Inc. Proprietary

36 | Tunnels Configuration Guide | 6 - Tunnel Commands

interfaces tunnel disable-link-detect
Directs a tunnel interface not to detect a change in the state of the physical link.

set interfaces tunnel tunx disable-link-detect

delete interfaces tunnel tunx disable-link-detect

show interfaces tunnel tunx

An interface detects a change in the state of the physical link.

tunx
The identifier of a tunnel interface. The identifier ranges from tun0 through tunx, where x is
a nonnegative integer.

Configuration mode

interfaces {
 tunnel tunx {
 disable-link-detect
 }
}

Use the set form of this command to disable detection of a change in the physical state (for
example, when a cable is unplugged).
Use the delete form of this command to enable detection of a change in the physical state.
Use the show form of this command to display the current configuration for the detection of a
change in the physical state.

interfaces tunnel encapsulation
Sets the encapsulation type for a tunnel interface.

set interfaces tunnel tunx encapsulation { gre | gre-bridge | gre-multipoint |
ipip | ipip6 | ip6ip6 | vxlan | vxlan-gpe }

delete interfaces tunnel tunx encapsulation { gre | gre-bridge | gre-
multipoint | ipip | ipip6 | ip6ip6 | sit vxlan | vxlan-gpe }

show interfaces tunnel tunx encapsulation

GRE is the default encapsulation type.

tunx
The identifier of a tunnel interface.

gre

IP Infusion Inc. Proprietary

Tunnels Configuration Guide | 6 - Tunnel Commands | 37

Uses GRE to encapsulate transported packets.
gre-bridge

Uses GRE to encapsulate transported packets. This encapsulation type is to be used only
for bridging, that is, when the tunnel interface is to be added to a bridge group.

gre-multipoint
Uses multipoint GRE to encapsulate transported packets.

ipip
Uses IP-in-IP to encapsulate transported packets.

ipip6
Uses IP-in-IPv6 to encapsulate transported packets.

ipip
Uses IPv6-in-IPv6 to encapsulate transported packets.

sit
Uses SIT to encapsulate transported packets.

vxlan
Uses VXLAN to encapsulate transported packets.

vxlan-gpe
Uses VXLAN-GPE to encapsulate transported packets.

Configuration mode

interfaces {
 tunnel tunx {
 encapsulation {
 gre
 gre-bridge
 gre-multipoint
 ipip
 ipip6
 ip6ip6
 sit
 vxlan
 vxlan-gpe
 }
 }

The Generic Routing Encapsulation (GRE) protocol provides a simple-general purpose
mechanism for encapsulating packets from a wide variety of network protocols to be
forwarded over another protocol. The original packet (the "passenger" packet) can be
one of many arbitrary network protocols-for example a multicast packet, an IPv6 packet,
or a non-IP LAN protocol such as AppleTalk, Banyen VINES, or Novell IPX. The delivery
protocol can be one of a number of routable IP protocols.

IP Infusion Inc. Proprietary

38 | Tunnels Configuration Guide | 6 - Tunnel Commands

A limitations of a regular GRE encapsulated tunnel is that it cannot be added to a bridge
group. GRE for Bridging (using the gre-bridge keyword) provides this ability. It should be
used only in cases in which tunnel interfaces are to be included in a bridge group. Refer to
Bridging Configuration Guide for further information.
GRE for multipoint (by using the gre-multipoint keyword) is used as part of DMVPN network
configurations. Refer to DMVPN Configuration Guide for further information. The main
difference between a standard GRE configuration and a GRE-for-multipoint configuration is
that, when configuring GRE for multipoint, you do not specify a remote IP. Everything else
remains the same.
The IP-in-IP encapsulation protocol is used to tunnel between networks that have different
capabilities or policies. For example, an IP-in-IP tunnel can be used to forward multicast
packets across a section of a network (such as an IPsec tunnel) that does not support
multicast routing. An IP-in-IP tunnel can also be used to influence the routing of the packet,
or to deliver a packet to a mobile device using Mobile IP.
The SIT encapsulation is used to tunnel IPv6 across an IPv4 network.
VXLAN (Virtual Extensible LAN) is an encapsulation developed to support running an
overlay L2 network over an existing IPv4/IPv6 network. It was originally developed to
increase scalability in data center/cloud computing environments by increasing the number
of isolated L2 networks from 4096 (limited by a 12-bit VLAN ID) to 16 million (using a 24-
bit VXLAN ID). Traffic belonging to the overlay network is encapsulated in a UDP packet
that is routed over the underlying transport network. The payload within a VXLAN packet is
required to be a full Ethernet frame.
VXLAN-GPE (VXLAN Generic Protocol Encapsulation) is a backwards-compatible
extension to VXLAN to allow overlay traffic of several types (including but not limited to
Ethernet) to be transported over the underlying IP network. The type of traffic being carried
is indicated using a set of bits in the VXLAN header.
Use the set form of this command to set the encapsulation type for a tunnel interface.
Use the delete form of this command to delete restore the default encapsulation type, which
is GRE, for a tunnel interface.
Use the show form of this command to display the encapsulation type for a tunnel interface.

interfaces tunnel ip tcp-mss limit
Clamps the TCP Maximum Segement Size (MSS) to a given value for a tunnel interface.

set interfaces tunnel tunx ip tcp-mss limit clamp-value

delete interfaces tunnel tunx ip tcp-mss limit clamp-value

show interfaces tunnel tunx ip tcp-mss limit

tunx
Tunnel group identifier (tun0 through tunN).

IP Infusion Inc. Proprietary

Tunnels Configuration Guide | 6 - Tunnel Commands | 39

clamp-value
Maximum segment size, in bytes (1-65535).

Configuration mode

interfaces {
 tunnel {
 ip {
 tcp-mss {
 limit
 }
 }
 }
}

Use the set form of this command to set the clamping for a tunnel interface.
Use the delete form of this command to remove the clamping for a tunnel interface.
Use the show form of this command to show the clamping for a tunnel interface.

interfaces tunnel ip tcp-mss mtu
Clamps the TCP Maximum Segement Size (MSS) to the interface MTU for a tunnel
interface.

set interfaces tunnel tunx ip tcp-mss mtu

delete interfaces tunnel tunx ip tcp-mss mtu

show interfaces tunnel tunx ip tcp-mss mtu

tunx
Tunnel group identifier (tun0 through tunN).

Configuration mode

interfaces {
 tunnel {
 ip {
 tcp-mss {
 mtu
 }
 }
 }
}

Use the set form of this command to clamp the MSS to the MTU for a tunnel interface.

IP Infusion Inc. Proprietary

40 | Tunnels Configuration Guide | 6 - Tunnel Commands

Use the delete form of this command to remove the clamping for a tunnel interface.
Use the show form of this command to show the clamping for a tunnel interface.

interfaces tunnel ip tcp-mss mtu-minus
Clamps the TCP Maximum Segement Size (MSS) to the interface MTU less a given value
for a tunnel interface.

set interfaces tunnel tunx ip tcp-mss mtu-minus subtrahend

delete interfaces tunnel tunx ip tcp-mss mtu-minus subtrahend

show interfaces tunnel tunx ip tcp-mss mtu-minus

tunx
Tunnel group identifier (tun0 through tunN).

subtrahend
Value to subtract from the MTU in bytes (1-65535).

Configuration mode

interfaces {
 tunnel {
 ip {
 tcp-mss {
 mtu-minus
 }
 }
 }
}

Use the set form of this command to set the clamping for a tunnel interface.
Use the delete form of this command to remove the clamping for a tunnel interface.
Use the show form of this command to show the clamping for a tunnel interface.

interfaces tunnel ipv6
Enables IPv6 for a tunnel.

set interfaces tunnel tunx ipv6

delete interfaces tunnel tunx ipv6

show interfaces tunnel tunx ipv6

IP Infusion Inc. Proprietary

Tunnels Configuration Guide | 6 - Tunnel Commands | 41

tunx
The identifier of a tunnel interface. The identifier ranges from tun0 through tunx, where x is
a nonnegative integer.

Configuration mode

interfaces {
 tunnel tunx {
 ipv6
 }
}

Use the set form of this command to enable IPv6 for a tunnel.
Use the delete form of this command to disable IPv6 for a tunnel.
Use the show form of this command to display the configuration for an IPv6 tunnel.

interfaces tunnel ipv6 address
Assigns an IPv6 address to a tunnel interface.

set interfaces tunnel tunx ipv6 address [autoconf | eui64 ipv6prefix | link-
local ipv6-address]

delete interfaces tunnel tunx ipv6 address [autoconf | eui64 ipv6prefix | link-
local ipv6-address]

show interfaces tunnel tunx ipv6 address [autoconf | eui64 | link-local]

tunx
The identifier of a tunnel interface. The identifier ranges from tun0 through tunx, where x is
a nonnegative integer.

autoconf
Generates an IPv6 address by using the SLAAC protocol. Use this option if the interface is
performing a “host” function rather than a “router” function. This option can be specified in
addition to static IPv6, static IPv4, and IPv4 DHCP addresses on the interface.

eui64 ipv6prefix
Specifies a 64-bit IPv6 address prefix that is used to configure an IPv6 address, in EUI-64
format. The system concatenates this prefix with a 64-bit EUI-64 value that is derived from
the 48-bit MAC address of the interface.

link-local ipv6-address
Sets the link-local IPv6 address.

Configuration mode

IP Infusion Inc. Proprietary

42 | Tunnels Configuration Guide | 6 - Tunnel Commands

interfaces {
 tunnel tunx {
 ipv6 {
 address {
 autoconf
 eui64 ipv6prefix
 link-local ipv6-address
 }
 }
 }
}

You can use the autoconf keyword to direct the system to automatically configure
(autoconfigure) the address by using the Stateless Address Autoconfiguration (SLAAC)
protocol that is defined in RFC 4862. Alternatively, you can provide an EUI-64 IPv6 address
prefix so that the system constructs the IPv6 address.
If you want the system to use SLAAC to acquire addresses on this interface, then in
addition to setting this parameter, you must also disable IPv6 forwarding, either globally (by
using the system ipv6 disable-forwarding command) or specifically on this interface (by
using interfaces tunnel ipv6 disable-forwarding).
Use the set form of this command to assign an IPv6 address to a tunnel interface.
Use the delete form of this command to delete an IPv6 address from a tunnel interface.
Use the show form of this command to display the current IPv6 addresses for an interface.

interfaces tunnel ipv6 disable
Disables IPv6 on a tunnel interface.

set interfaces tunnel tunx ipv6 disable

delete interfaces tunnel tunx ipv6 disable

show interfaces tunnel tunx ipv6 disable

tunx
The identifier of a tunnel interface. The identifier ranges from tun0 through tunx, where x is a
nonnegative integer.

Configuration mode

interfaces {
 tunnel tunx {
 ipv6 {
 disable
 }
 }
}

IP Infusion Inc. Proprietary

Tunnels Configuration Guide | 6 - Tunnel Commands | 43

By default, IPv6 is enabled on all interfaces. A global command exists which can disable
IPv6, namely set system ipv6 disable, and this will take precedence over any of the
existing per-interface based, IPv6 commands.
IPv6 Forwarding can be disabled via the set interface tunnel tunx ipv6 disable-
forwarding command, but note that IPv6 traffic can still be terminated on this interface.
IPv6 configuration can be totally disabled via the set interface tunnel tunx ipv6 disable
command.
Use the set form of this command to disable IPv6 on this interface.
Use the delete form of this command to enable IPv6 on this interface.
Use the show form of this command to display the current IPv6 configuration on this
interface.

interfaces tunnel ipv6 disable-forwarding
Disables IPv6 forwarding on a tunnel interface.

set interfaces tunnel tunx ipv6 disable-forwarding

delete interfaces tunnel tunx ipv6 disable-forwarding

show interfaces tunnel tunx ipv6 disable-forwarding

IPv6 packets are forwarded.

tunx
The identifier of a tunnel interface. The identifier ranges from tun0 through tunx, where x is
a nonnegative integer.

Configuration mode

interfaces {
 tunnel tunx {
 ipv6 {
 disable-forwarding
 }
 }
}

You can also disable IPv6 forwarding globally (that is, for all interfaces) by using the system
ipv6 disable-forwarding command.

Use the set form of this command to disable IPv6 packet forwarding on a tunnel interface.
Use the delete form of this command to enable IPv6 packet forwarding on a tunnel
interface.

IP Infusion Inc. Proprietary

44 | Tunnels Configuration Guide | 6 - Tunnel Commands

Use the show form of this command to display the current configuration of IPv6 packet
forwarding on a tunnel interface.

interfaces tunnel ipv6 dup-addr-detect-transmits
Specifies the number of times to transmit NS packets as part of the DAD process.

set interfaces tunnel tunx ipv6 dup-addr-detect-transmits number

delete interfaces tunnel tunx ipv6 dup-addr-detect-transmits [number]

show interfaces tunnel tunx ipv6 dup-addr-detect-transmits

One NS packet is transmitted as part of the DAD process.

tunx
The identifier of a tunnel interface. The identifier ranges from tun0 through tunx, where x is
a nonnegative integer.

number
The number of times to transmit NS packets. The default number of times is 1. Enter 0 to
disable DAD.

Configuration mode

interfaces {
 tunnel tunx {
 ipv6 {
 dup-addr-detect-transmits number
 }
 }
}

Use the set form of this command to specify the number of times to transmit Neighbor
Solicitation (NS) packets as part of the Duplicate Address Detection (DAD) process.
Use the delete form of this command to delete the number of times and use the default
number of 1.
Use the show form of this command to display the current number of times.

interfaces tunnel ipv6 router-advert
Specifies router advertisements (RAs) to be sent from a tunnel interface.

set interfaces tunnel tunx ipv6 router-advert [cur-hop-limit limit] [
default-lifetime lifetime] [default-preference preference] [link-
mtu mtu] [managed-flag state] [max-interval interval] [min-

IP Infusion Inc. Proprietary

Tunnels Configuration Guide | 6 - Tunnel Commands | 45

interval interval] [other-config-flag state] [prefix ipv6net [
autonomous-flag state | on-link-flag state | preferred-lifetime lifetime |
valid-lifetime lifetime]] [reachable-time time] [retrans-timer
time] [send-advert state]

delete interfaces tunnel tunx ipv6 router-advert [cur-hop-limit] [
default-lifetime] [default-preference] [link-mtu] [
managed-flag] [max-interval] [min-interval] [other-
config-flag] [prefix ipv6net [autonomous-flag | on-link-flag |
preferred-lifetime | valid-lifetime]] [reachable-time] [
retrans-timer] [send-advert]

show interfaces tunnel tunx ipv6 router-advert

Router advertisements are not sent on an interface.

tunx
The identifier of a tunnel interface. The identifier ranges from tun0 through tunx, where x is
a nonnegative integer.

cur-hop-limit limit
Limits the Hop Count field of the IP header for outgoing (unicast) IP packets. This limit is
placed in the Hop Count field. The limit ranges from 0 through 255. The default limit is 64. A
limit of 0 means that the limit is unspecified by the router.

default-lifetime lifetime
Specifies the lifetime, in seconds, associated with the default router. The lifetime either is 0,
which indicates that the router is not a default router, or ranges from the interval specified in
the max-interval argument through 9000 (18.2 hours). If not entered, the lifetime is three
times the interval specified in the max-interval argument.

default-preference preference
Specifies the preference associated with the default router. The preference is one of the
following:
low: Makes the default router low preference.
medium: Makes the default router medium preference.
high: Makes the default router high preference.
The default preference is medium.

link-mtu mtu
Specifies the MTU to be advertised for the link. The MTU either is 0 or ranges from 1280
through the maximum MTU for the type of link, as defined in RFC 2464. The default MTU
is 0, which means the MTU is not specified in the router advertisement message. That is
because it is expected that the MTU is configured directly on the interface itself and not for
routing advertisements. You can configure this option in cases where the link MTU is not
well known.
If the MTU entered here does not match the MTU configured on the interface, the system
issues a warning but does not fail.

managed-flag state
Specifies whether to use the administered protocol for address autoconfiguration. The state
is either of the following:

IP Infusion Inc. Proprietary

46 | Tunnels Configuration Guide | 6 - Tunnel Commands

true: Specifies that hosts use the administered (stateful) protocol for address
autoconfiguration in addition to any addresses autoconfigured using stateless address
autoconfiguration.
false: Specifies that hosts use only stateless address autoconfiguration.
The default state is false.

max-interval interval
Specifies the maximum time, in seconds, allowed between sending unsolicited multicast
router advertisements from the interface. The interval ranges from 4 through 1800. The
default interval is 600 (10 minutes).

min-interval interval
Specifies the minimum time, in seconds, allowed between sending unsolicited multicast
router advertisements from the interface. The interval ranges from 3 through 0.75 times
the interval specified in the max-interval argument. The default interval is 0.33 times the
interval specified in the max-interval argument.

other-config-flag state
Specifes that the interface uses the administered (stateful) protocol for autoconfiguration of
nonaddress information, as defined in RFC 4862. The state is either of the following:
true: Specifies that hosts use the administered protocol for autoconfiguration of nonaddress
information.
false: Specifies that hosts use stateless autoconfiguration of nonaddress information.
The default state is false.

prefix ipv6net
Multi-node. Specifies an IPv6 prefix, in the format ipv6-address/prefix, to be advertised on
the IPv6 interface.
You can define more than one IPv6 prefix by configuring multiple prefix configuration
nodes.

autonomous-flag state
Specifies whether the IPv6 prefix can be used for autonomous address configuration as
defined in RFC 4862. The state is either of the following:
true: Specifies that the prefix can be used for autonomous address configuration.
false: Specifies that the prefix cannot be used for autonomous address configuration.
The default state is true.

on-link-flag state
Specifies whether the IPv6 prefix can be used for on-link determination, as defined in RFC
4862. The state is either of the following:
true: Specifies that the prefix can be used for on-link determination.
false: Specifies that the advertisement makes no statement about on-link or off-link
properties of the prefix. For instance, the prefix might be used for address configuration with
some addresses belonging to the prefix being on-link and others being off-link.
The default state is true.

preferred-lifetime lifetime

IP Infusion Inc. Proprietary

Tunnels Configuration Guide | 6 - Tunnel Commands | 47

Specifies the lifetime, in seconds, that the addresses generated from the IPv6 prefix through
Stateless Address Autoconfiguration (SLAAC) is to remain preferred, as defined in RFC
4862. The lifetime is with respect to the time the packet is sent. The lifetime ranges from
1 through 4294967296 plus the infinity keyword, which represents forever. (The actual
value of infinity is a byte in which all bits are set to 1s: 0XFFFFFFFF.) The default lifetime is
604800 (7 days).

valid-lifetime lifetime
Specifies the lifetime, in seconds, that the IPv6 prefix is valid for the purpose of on-link
determination, as defined in RFC 4862. The lifetime is with respect to the time the packet
is sent. The lifetime ranges from 1 through 4294967296 plus the infinity keyword, which
represents forever. (The actual value of infinity is a byte in which all bits are set to 1s:
0XFFFFFFFF.) The default lifetime is 2592000 (30 days).

reachable-time time
Specifies the length of time, in milliseconds, for which the system assumes a neighbor is
reachable after having received a reachability confirmation. This time is used by address
resolution and the Neighbor Unreachability Detection algorithm (see Section 7.3 of RFC
2461). The time ranges from 0 through 3600000, where 0 means the reachable time is not
specified in the router advertisement message. The default time is 0.

retrans-timer time
Specifies the length of time, in milliseconds, between retransmitted NS messages. This time
is used by address resolution and the Neighbor Unreachability Detection algorithm (see
Sections 7.2 and 7.3 of RFC 2461). The time ranges from 0 through 4294967295, where 0
means the retransmit time is not specified in the router advertisement message. The default
time is 0.

send-advert state
Specifies whether router advertisements are to be sent from this interface. The state is
either of the following:
true: Sends router advertisements from this interface.
false: Does not send router advertisements from this interface. If this state is in effect,
parameters in this configuration subtree are still used to configure the local implementation
parameters.
The default state is true.

Configuration mode

interfaces {
 tunnel tunx {
 ipv6 {
 router-advert {
 cur-hop-limit limit
 default-lifetime lifetime
 default-preference preference
 link-mtu mtu
 managed-flag state
 max-interval interval
 min-interval interval
 other-config-flag state

IP Infusion Inc. Proprietary

48 | Tunnels Configuration Guide | 6 - Tunnel Commands

 prefix ipv6net {
 autonomous-flag state
 on-link-flag state
 preferred-lifetime lifetime
 valid-lifetime lifetime
 }
 reachable-time time
 retrans-timer time
 send-advert state
 }
 }
 }
}

Use this command to configure RAs to be sent from a tunnel interface.
Router advertisements are sent by IPv6 routers to advertise their existence to hosts on the
network. IPv6 hosts do not send RAs.
If the router-advert node of the configuration tree is missing, RAs are not sent. In addition,
if IPv6 forwarding is disabled either globally (by using the system ipv6 disable-forwarding
command) or on the interface (by using the interfaces tunnel <tunx> ipv6 disable-
forwarding command), RAs are not sent.
Most RA parameters are required by either the Neighbor Discovery (ND) protocol or the
Stateless Address Autoconfiguration (SLAAC) protocol. These parameters are used locally
for the IPv6 implementation and become part of the RA messages sent to hosts on the
network so that they can be configured appropriately.
Use the set form of this command to create the router-advert configuration node and begin
to send RAs.
Use the delete form of this command to delete the router-advert configuration node and
stop sending RAs.
Use the show form of this command to display the current configuration for sending RAs.

interfaces tunnel ipv6 tcp-mss limit
Clamps the TCP Maximum Segement Size (MSS) to a given value for a tunnel interface.

set interfaces tunnel tunx ipv6 tcp-mss limit clamp-value

delete interfaces tunnel tunx ipv6 tcp-mss limit clamp-value

show interfaces tunnel tunx ipv6 tcp-mss limit

tunx
Tunnel group identifier (tun0 through tunN).

clamp-value
Maximum segment size, in bytes (1-65535).

IP Infusion Inc. Proprietary

Tunnels Configuration Guide | 6 - Tunnel Commands | 49

Configuration mode

interfaces {
 tunnel {
 ipv6 {
 tcp-mss {
 limit
 }
 }
 }
}

Use the set form of this command to set the clamping for a tunnel interface.
Use the delete form of this command to remove the clamping for a tunnel interface.
Use the show form of this command to show the clamping for a tunnel interface.

interfaces tunnel ipv6 tcp-mss mtu
Clamps the TCP Maximum Segement Size (MSS) to the interface MTU for a tunnel
interface.

set interfaces tunnel tunx ipv6 tcp-mss mtu

delete interfaces tunnel tunx ipv6 tcp-mss mtu

show interfaces tunnel tunx ipv6 tcp-mss mtu

tunx
Tunnel group identifier (tun0 through tunN).

Configuration mode

interfaces {
 tunnel {
 ipv6 {
 tcp-mss {
 mtu
 }
 }
 }
}

Use the set form of this command to clamp the MSS to the MTU for a tunnel interface.
Use the delete form of this command to remove the clamping for a tunnel interface.
Use the show form of this command to show the clamping for a tunnel interface.

IP Infusion Inc. Proprietary

50 | Tunnels Configuration Guide | 6 - Tunnel Commands

interfaces tunnel ipv6 tcp-mss mtu-minus
Clamps the TCP Maximum Segement Size (MSS) to the interface MTU less a given value
for a tunnel interface.

set interfaces tunnel tunx ipv6 tcp-mss mtu-minus subtrahend

delete interfaces tunnel tunx ipv6 tcp-mss mtu-minus subtrahend

show interfaces tunnel tunx ipv6 tcp-mss mtu-minus

tunx
Tunnel group identifier (tun0 through tunN).

subtrahend
Value to subtract from the MTU in bytes (1-65535).

Configuration mode

interfaces {
 tunnel {
 ipv6 {
 tcp-mss {
 mtu-minus
 }
 }
 }
}

Use the set form of this command to set the clamping for a tunnel interface.
Use the delete form of this command to remove the clamping for a tunnel interface.
Use the show form of this command to show the clamping for a tunnel interface.

interfaces tunnel local-interface
Allows tunnel support if the local physical interface designated for a tunnel endpoint is
configured using DHCP.

set interfaces tunnel tunx local-interface interface-name

delete interfaces tunnel tunx local-interface interface-name

show interfaces tunnel tunx local-interface

tunx
The identifier of a tunnel interface. The identifier ranges from tun0 through tunx, where x is
a nonnegative integer.

interface-name

IP Infusion Inc. Proprietary

Tunnels Configuration Guide | 6 - Tunnel Commands | 51

The identifier of a physical interface.

Configuration mode

interfaces {
 tunnel tunx {
 local-interface interface-name
 }
}

For a tunnel to function, both the local and remote endpoints must be configured.
This feature is intended for use on NHRP spoke routes. You can use this command only if
NHRP map is configured by using the interfaces tunnel <tunx> nhrp map command.
The encapsulation type must be GRE multipoint.
It cannot be used with NHRP hub configurations. The hub end of the NHRP tunnel must be
able to reach the DHCP subnet from which the spoke is assigned a local DHCP address.
The tunnel configuration must include either a local physical interface that is configured
using DHCP, as specified in this command, or a local IP address, specified by using the
interfaces tunnel tunx local-ip address command.
The local interface specified in this command must be configured for DHCP.
Use the set form of this command to specify the IP address to use as the local endpoint of a
tunnel.
Use the delete form of this command to delete the local endpoint of a tunnel.
Use the show form of this command to display the IP address for the local endpoint of a
tunnel.

interfaces tunnel local-ip
Specifies the IP address for the local endpoint of a tunnel.

set interfaces tunnel tunx local-ip { ipv4_address | ipv6_address }

delete interfaces tunnel tunx local-ip [ipv4_address | ipv6_address]

show interfaces tunnel tunx local-ip

tunx
The identifier of a tunnel interface. The identifier ranges from tun0 through tunx, where x is
a nonnegative integer.

ipv4_address
An IPv4 address to use as the tunnel endpoint on the local router. The IP address must
already be configured for the interface.

ipv6_address

IP Infusion Inc. Proprietary

52 | Tunnels Configuration Guide | 6 - Tunnel Commands

An IPv6 address to use as the tunnel endpoint on the local router. The IP address must
already be configured for the interface.

Configuration mode

interfaces {
 tunnel tunx {
 local-ip
 ipv4_address
 ipv6_address
 }
}

For a tunnel to function, both the local and remote endpoints must be configured.

Note: You must use different local-ip addresses when configuring two or more mGRE
tunnels.

The tunnel configuration must include either the local IP address, specified by using this
command, or a local physical interface, specified by using the interfaces tunnel tunx
local-interface ifname command. You can use the local interface option only if NHRP map
is configured by using the interfaces tunnel <tunx> nhrp map command.
Use the set form of this command to specify the IP address to use as the local endpoint of a
tunnel.
Use the delete form of this command to delete the local endpoint of a tunnel.
Use the show form of this command to display the IP address for the local endpoint of a
tunnel.

interfaces tunnel mtu
Sets the MTU size for a tunnel interface.

set interfaces tunnel tunx mtu mtu

delete interfaces tunnel tunx mtu [mtu]

show interfaces tunnel tunx mtu

Tunnel interface packets have an MTU size of 1476.

tunx
The identifier of a tunnel interface. The identifier ranges from tun0 through tunx, where x is
a nonnegative integer.

mtu
The MTU size, in octets, for the tunnel interface. The size ranges from 68 through 65535.
The default size is 1476.

IP Infusion Inc. Proprietary

Tunnels Configuration Guide | 6 - Tunnel Commands | 53

Configuration mode

interfaces {
 tunnel tunx {
 mtu mtu
 }
}

Use this command to set the size of the maximum transfer unit (MTU) for encapsulated
packets that traverse a tunnel.
This MTU size is applied to the packets that are embedded in the encapsulating protocol;
it is not the size of the MTU of the “carrier” packets themselves. The MTU size of carrier
packets is dictated by the size of the MTU of the physical interface that is transmitting and
receiving the tunnel packets.
Use the set form of this command to set the MTU size for encapsulated packets traversing
the tunnel.
Use the delete form of this command to restore the default MTU size, which is 1476, for
encapsulated packets.
Use the show form of this command to display the MTU size for encapsulated packets.

interfaces tunnel multicast
Enables multicast over a specified tunnel.

set interfaces tunnel tunx multicast { enable | disable }

delete interfaces tunnel tunx multicast

show interfaces tunnel tunnel tunx multicast

tunx
The identifier of a tunnel interface. The identifier ranges from tun0 through tunx, where x is
a nonnegative integer.

enable
Enable multicast over the tunnel.

disable
Disable multicast over the tunnel.

Configuration mode

interfaces {
 tunnel tunx {

IP Infusion Inc. Proprietary

54 | Tunnels Configuration Guide | 6 - Tunnel Commands

 multicast {
 enable
 disable
 }
 }
}

Use the set form of this command to enable multicast .
Use the delete form of this command to disable multicast.
Use the show form of this command to display the multicast configuration for this interface.

interfaces tunnel parameters ip ignore-df
Configures the tunnel to ignore the DF bit of the payload when encapsulating IP traffic.

set interfaces tunnel tunx parameters ip ignore-df

delete interfaces tunnel tunx parameters ip ignore-df

show interfaces tunnel tunx parameters ip ignore-df

By default, the DF bit of the payload is not ignored.

tunx
The identifier of a tunnel interface. The identifier ranges from tun0 through tunx, where x is
a nonnegative integer.

Configuration mode

interfaces {
 tunnel tunx {
 parameters {
 ip {
 ignore-df
 }
 }
 }
}

Note: This command is valid only with GRE and GRE-multipoint encapsulation.

Use the set form of this command configure the tunnel to ignore the DF bit of the payload
when encapsulating IP traffic.
Use the delete form of this command to consider the DF bit of the payload when
encapsulating IP traffic.
Use the show form of this command to display the value of the ignore-df parameter.

IP Infusion Inc. Proprietary

Tunnels Configuration Guide | 6 - Tunnel Commands | 55

interfaces tunnel parameters ip key
Defines an authentication key for a tunnel interface.

set interfaces tunnel tunx parameters ip key key

delete interfaces tunnel tunx parameters ip key [key]

show interfaces tunnel tunx parameters ip key

No key is configured; authentication is not required.

tunx
The identifier of a tunnel interface. The identifier ranges from tun0 through tunx, where x is
a nonnegative integer.

key
A key for authenticating the local endpoint to the remote endpoint. The key must match on
both ends of the connection for the tunnel to be established.

Configuration mode

interfaces {
 tunnel tunx {
 parameters {
 ip {
 key key
 }
 }
 }
}

Use this command to provide a simple password-like numeric key for authenticating tunnel
endpoints to each other. For the tunnel to be established, keys must be identical at both
ends of the tunnel.

Note: This is only valid with GRE and GRE-multipoint encapsulation only.

Use the set form of this command to define an authentication key for a tunnel interface.
Use the delete form of this command to delete the authentication key for a tunnel interface.
Use the show form of this command to display the authentication key for a tunnel interface.

interfaces tunnel parameters ip tos
Specifies the value to write into the Type of Service (ToS) byte of the IP header of a tunnel
packet.

set interfaces tunnel tunx parameters ip tos tos

IP Infusion Inc. Proprietary

56 | Tunnels Configuration Guide | 6 - Tunnel Commands

delete interfaces tunnel tunx parameters ip tos [tos]

show interfaces tunnel tunx parameters ip tos

The default value is 0.

tunx
The identifier of a tunnel interface. The identifier ranges from tun0 through tunx, where x is
a nonnegative integer.

tos
The value to write into the ToS byte in the IP header of a tunnel packet (the carrier packet).
The value ranges from 0 through 99, where 0 means a tunnel packet copies the ToS value
from the packet being encapsulated (the passenger packet).

Configuration mode

interfaces {
 tunnel tunx {
 parameters {
 ip {
 tos tos
 }
 }
 }
}

Use this command to specify the value to write into the 8-bit ToS byte of the IP header for a
packet that traverses a tunnel interface. The ToS byte of the IP header of a packet specifies
the forwarding behavior to be applied to the packet.
Use the set form of this command to specify the ToS value.
Use the delete form of this command to restore the default behavior for the ToS byte,
that is, the ToS byte of the encapsulated packet is copied into the IP header of the tunnel
packet.
Use the show form of this command to display the current value for the ToS byte.

interfaces tunnel parameters ip ttl
Sets the time-to-live (TTL) value to write into the IP header of a tunnel packet.

set interfaces tunnel tunx parameters ip ttl ttl

delete interfaces tunnel tunx parameters ip ttl [ttl]

show interfaces tunnel tunx parameters ip ttl

IP Infusion Inc. Proprietary

Tunnels Configuration Guide | 6 - Tunnel Commands | 57

The TTL byte of the encapsulated packet is copied into the TTL byte of the IP header of a
tunnel packet.

tunx
The identifier of a tunnel interface. The identifier ranges from tun0 through tunx, where x is
a nonnegative integer.

ttl
The value to write into the TTL field in the IP header of a tunnel packet (the carrier packet).
The value ranges from 0 through 255, where 0 means a tunnel packet copies the TTL value
from the packet being encapsulated (the passenger packet). The default value is 255.

Configuration mode

interfaces {
 tunnel tunx {
 parameters {
 ip {
 ttl ttl
 }
 }
 }
}

The TTL field of the IP header of a packet limits the lifetime of an IP packet and prevents
indefinite packet looping.
Use the set form of this command to set the TTL value to write into the TTL field of the IP
header for a packet that traverses a tunnel interface.
Use the delete form of this command to restore the default behavior for the TTL field, that
is, the TTL byte of the encapsulated packet is copied into the TTL byte of the IP header of
the tunnel packet.
Use the show form of this command to display the current TTL value to write into the IP
header of a tunnel packet.

interfaces tunnel parameters ipv6 encaplimit
Sets the maximum number of times that a tunnel packet can be encapsulated.

set interfaces tunnel tunx parameters ipv6 encaplimit { 0-255 | none }

delete interfaces tunnel tunx parameters ipv6 encaplimit [0-255 | none]

show interfaces tunnel tunx parameters ipv6 encaplimit

The default limit is 4.

tunx

IP Infusion Inc. Proprietary

58 | Tunnels Configuration Guide | 6 - Tunnel Commands

The identifier of a tunnel interface. The identifier ranges from tun0 through tunx, where x is
a nonnegative integer.

0-255
The limit ranges from 0 through 255.

none
If no limit is specified, the command is disabled.

Configuration mode

interfaces {
 tunnel tunx {
 parameters {
 ipv6 {
 encaplimit
 0-255
 none
 }
 }
 }
}

Use the set form of this command to set the maximum number of times (that is, the number
of levels) a packet can be encapsulated.
Use the delete form of this command to restore the default maximum number of four times.
Use the show form of this command to display the number of times.

interfaces tunnel parameters ipv6 flowlabel
Defines the flow label of the encapsulating IPv6 header.

set interfaces tunnel tunx parameters ipv6 flowlabel { flowlabel | inherit }

delete interfaces tunnel tunx parameters ipv6 flowlabel [flowlabel | inherit]

show interfaces tunnel tunx parameters ipv6 flowlabel

The default flow label is inherit.

tunx
The identifier of a tunnel interface. The identifier ranges from tun0 through tunx, where x is
a nonnegative integer.

0-0xfffff
The flow label of the encapsulating IPv6 header. The flow label ranges from 0 through 0xfffff.

inherit
The default flow label of the encapsulating IPv6 header.

IP Infusion Inc. Proprietary

Tunnels Configuration Guide | 6 - Tunnel Commands | 59

Configuration mode

interfaces {
 tunnel tunx {
 parameters {
 ipv6 {
 flowlabel
 0-0xfffff
 inherit
 }
 }
 }
}

The flow label field of the encapsulated packet is copied into the flow label field of the IPv6
header of a tunnel packet.
Use the set form of this command to specify the flowlabel of the encapsulating IPv6 header.
Use the delete form of this command to restore the default flow label, which is the flow label
of the encapsulated packet.
Use the show form of this command to display the current flow label.

interfaces tunnel parameters ipv6 hoplimit
Sets the hop-limit value to write into the IPv6 header of a tunnel packet.

set interfaces tunnel tunx parameters ipv6 hoplimit 0-255

delete interfaces tunnel tunx parameters ipv6 hoplimit [0-255]

show interfaces tunnel tunx parameters ipv6 hoplimit

The default hop limit is 64.

tunx
The identifier of a tunnel interface. The identifier ranges from tun0 through tunx, where x is
a nonnegative integer.

0-255
The value to write into the hop-limit field in the IPv6 header of a tunnel packet (the carrier
packet). The value ranges from 0 through 255, where 0 means a tunnel packet copies the
value from the packet being encapsulated (the passenger packet).

Configuration mode

interfaces {
 tunnel tunx {

IP Infusion Inc. Proprietary

60 | Tunnels Configuration Guide | 6 - Tunnel Commands

 parameters {
 ipv6 {
 hoplimit 0-255
 }
 }
 }
}

The hop-limit byte of the encapsulated packet is copied into the hop-limit byte of the IPv6
header of a tunnel packet.
Use this command to set the value to write into the hop-limit field of the IPv6 header for a
packet that traverses a tunnel interface. The hop-limit field of the IPv6 heder of a packet
limits the lifetime of an IPv6 packet and prevents indefinite packet looping.
Use the set form of this command to set the hop-limit value to write into the IPv6 header of
a tunnel packet.
Use the delete form of this command to restore the default behavior for the hoplimit field,
that is, the hop-limit byte of the encapsulated packet is copied into the IPv6 header of the
tunnel packet.
Use the show form of this command to display the current hop-limit value to write into the
IPv6 header of a tunnel packet.

interfaces tunnel parameters ipv6 tclass
Sets the value to write into the tclass byte of the IPv6 header of a tunnel packet.

set interfaces tunnel tunx parameters ipv6 tclass 0-0xff

delete interfaces tunnel tunx parameters ipv6 tclass [0-0xff]

show interfaces tunnel tunx parameters ipv6 tclass

The default value is inherit.

tunx
The identifier of a tunnel interface. The identifier ranges from tun0 through tunx, where x is
a nonnegative integer.

0-0xff
The value to write into the tclass byte in the IPv6 header of a tunnel packet (the carrier
packet). The value ranges from 0 through 0xff, where 0 means a tunnel packet copies the
tclass byte from the packet being encapsulated (the passenger packet).

inherit
The default traffic class of the encapsulating IPv6 header.

Configuration mode

IP Infusion Inc. Proprietary

Tunnels Configuration Guide | 6 - Tunnel Commands | 61

interfaces {
 tunnel tunx {
 parameters {
 ipv6 {
 tclass 0-0xff
 }
 }
 }
}

The tclass byte of the encapsulated packet is copied into the tclass byte of the IPv6 header
of a tunnel packet. The tclass byte of the IPv6 header of a packet specifies the forwarding
behavior to be applied to the packet.
Use the set form of this command to set the value to write into the tclass byte of the IPv6
header for a packet that traverses a tunnel interface.
Use the delete form of this command to restore the default behavior for the tclass field,
that is, the tclass byte of the encapsulated packet is copied into the tclass byte of the IPv6
header of the tunnel packet.
Use the show form of this command to display the current tclass value to write into the IPv6
header of a tunnel packet.

interfaces tunnel path-mtu-discovery-disable
Disables path Maximum Transmission Unit (MTU) discovery for the local interface used with
a specified tunnel.

set interfaces tunnel tunx path-mtu-discovery-disable

delete interfaces tunnel tunx path-mtu-discovery-disable

show interfaces tunnel tunnel tunx path-mtu-discovery-disable

tunx
The identifier of a tunnel interface. The identifier ranges from tun0 through tunx, where x is
a nonnegative integer.

Configuration mode

interfaces {
 tunnel tunx {
 path-mtu-discovery-disable
 }
 }
}

IP Infusion Inc. Proprietary

62 | Tunnels Configuration Guide | 6 - Tunnel Commands

Use the set form of this command to disable path MTU discovery on the tunnel's local
interface.
Use the delete form of this command to enable path MTU discovery.
Use the show form of this command to display the current path MTU discovery setting for the
tunnel interface.

interfaces tunnel remote-ip
Sets the IP address for the remote endpoint of a tunnel.

set interfaces tunnel tunx remote-ip { ipv4 | ipv6 }

delete interfaces tunnel tunx remote-ip [ipv4 | ipv6]

show interfaces tunnel tunx remote-ip

tunx
The identifier of a tunnel interface. The identifier ranges from tun0 through tunx, where x is
a nonnegative integer.

ipv4
An IPv4 address to use as the tunnel endpoint on the remote router. The IP address must
already be configured for the interface.

ipv6
An IPv6 address to use as the tunnel endpoint on the remote router. The IP address must
already be configured for the interface.

Configuration mode

interfaces {
 tunnel tunx {
 remote-ip
 ipv4
 ipv6
 }
}

Note that the tunnel cannot be established when both the local and remote endpoints are
not configured.
Use the set form of this command to set the IP address to use as the remote endpoint of a
tunnel.
Use the delete form of this command to delete the remote endpoint of a tunnel.
Use the show form of this command to display the IP address for the remote endpoint of a
tunnel.

IP Infusion Inc. Proprietary

Tunnels Configuration Guide | 6 - Tunnel Commands | 63

show interfaces tunnel
Displays the operational status about one tunnel interface or all tunnel interfaces.

show interfaces tunnel [tunx | detail]

Information is displayed for all tunnel interfaces.

tunx
Displays information for the specified tunnel interface. The identifier ranges from tun0
through tunx, where x is a nonnegative integer.

detail
Displays a detailed status of all tunnel interfaces.

Operational mode

Use this command to display the operational status of one tunnel interface or all tunnel
interfaces.

The following example shows how to display the operational status for the GRE tun0 tunnel
interface.

vyatta@vyatta:~$ show interfaces tunnel
 tun0@NONE: <POINTOPOINT,NOARP,UP,LOWER_UP> mtu 1476 qdisc noqueue
 link/gre 192.168.20.2 peer 192.168.20.3
 inet 192.168.20.1/24 brd 192.168.20.255 scope global tun0
 RX: bytes packets errors dropped overrun mcast
 0 0 0 0 0 0
 TX: bytes packets errors dropped carrier collisions
 0 0 0 0 0 0

IP Infusion Inc. Proprietary

Chapter 7. VXLAN Tunnels

Overview
Virtual Extensible LAN (VXLAN) tunnels run on an overlay Layer 2 network over an existing
IPv4 or IPv6 transport network. VXLAN was originally developed to increase scalability
in data center and cloud computing environments by increasing the number of isolated
Layer 2 networks from 4096 (limited by a 12-bit VLAN identifier) to 16 million (using a 24-bit
VXLAN identifier).
Traffic belonging to the overlay network is encapsulated in a Layer 3 UDP packet that is
routed over the underlying transport network.
The entity that performs the encapsulation and de-encapsulation is called a VXLAN tunnel
endpoint (VTEP).
A VXLAN network identifier (VNI) uniquely identifies each Layer 2 subnet or segment.
Virtual machines on the same VNI can communicate directly with each other, while virtual
machines on different VNIs need a router to communicate with each other.
The VXLAN configuration must be specified under the existing tunnel configuration sub-
tree. All existing commands that are relevant to VXLAN tunnels are supported. A set of
commands exist for attributes specific to VXLAN tunnels.

Benefits of VXLAN Tunnels
These are some benefits of VXLAN tunnels:

• You can theoretically create as many as 16 million VXLANs
• You can enable migration of virtual machines between servers that exist in separate

Layer 2 domains by tunneling the traffic over Layer 3 networks. This functionality
allows you to dynamically allocate resources within or between data centers
without being constrained by Layer 2 boundaries or being forced to create large or
geographically stretched Layer 2 domains.

• Using VXLANs to create smaller Layer 2 domains that are connected over a Layer
3 network means that you do not need to use Spanning Tree Protocol (STP) to
converge the topology but can use more robust routing protocols in the Layer 3
network instead. In the absence of STP, none of your links are blocked, which means
you can get full value from all the ports.

• Using routing protocols to connect Layer 2 domains allows you to load-balance the
traffic to allow you to make the best use of your available bandwidth.

VXLAN as an Overlay Network
VXLAN is often described as an overlay technology because it allows you to stretch Layer
2 connections over an intervening Layer 3 network by encapsulating (tunneling) Ethernet
frames in a VXLAN packet that includes IP addresses. VTEPs can be end hosts or network
switches or routers. VTEPs encapsulate VXLAN traffic and de-encapsulate that traffic when

IP Infusion Inc. Proprietary

Tunnels Configuration Guide | 7 - VXLAN Tunnels | 65

it leaves the VXLAN tunnel. To encapsulate an Ethernet frame, VTEPs add a number of
fields, including the following fields:

• Outer media access control (MAC) destination address (MAC address of the tunnel
endpoint VTEP)

• Outer MAC source address (MAC address of the tunnel source VTEP)
• Outer IP destination address (IP address of the tunnel endpoint VTEP)
• Outer IP source address (IP address of the tunnel source VTEP)
• Outer UDP header
• A VXLAN header that includes a 24-bit field—called the VXLAN network identifier

(VNI)—that is used to uniquely identify the VXLAN. The VNI is similar to a VLAN ID,
but having 24 bits allows you to create many more VXLANs than VLANs. The VXLAN
header also contains 8 bits for VXLAN flags and reserved fields.

Figure 5. VXLAN header

Note: Because VXLAN adds 50 to 54 bytes of additional header information to the
original Ethernet frame, you might want to increase the MTU of the underlying network.
In this case, configure the MTU of the physical interfaces that participate in the VXLAN
network, not the MTU of the logical VTEP source interface, which is ignored.

VXLAN compared to VXLAN-GPE
Vyatta vRouter supports both VXLAN and VXLAN Generic Protocol Encapsulation (VXLAN-
GPE) tunnels.
A standard VXLAN frame encapsulates Ethernet frames in an outer UDP/IP transport. The
payload within a VXLAN packet is required to be a full Ethernet frame.
A VXLAN-GPE frame adds a header to extend the existing VXLAN protocol to provide
support for multiprotocol encapsulation, operations, administration and management (OAM)
signaling and explicit versioning. VXLAN-GPE is a backwards-compatible extension to
VXLAN to allow overlay traffic of several types (including but not limited to Ethernet) to be
transported over the underlying IP network. The type of traffic being carried is indicated
using a set of bits in the VXLAN header.
Standard VXLAN Header:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
|R|R|R|R|I|R|R|R| Reserved |
+-+
| VXLAN Network Identifier (VNI) | Reserved |

IP Infusion Inc. Proprietary

66 | Tunnels Configuration Guide | 7 - VXLAN Tunnels

+-+

VXLAN GPE Header:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
|R|R|Ver|I|P| Reserved | Next Protocol |
+-+
| VXLAN Network Identifier (VNI) | Reserved |
+-+

Fragmentation with VXLAN GPE
VTEPs must never fragment an encapsulated VXLAN GPE packet, and when the outer
IP header is IPv4, VTEPs must set the DF bit in the outer IPv4 header. The underlay
network should be configured to carry an MTU large enough to accommodate the added
encapsulation headers. IP Infusion Inc. recommends that VTEPs perform Path MTU
discovery to determine if the underlay network can carry the encapsulated payload packet.

Connecting a VXLAN VTEP to a VXLAN GPE VTEP
To connect a VXLAN VTEP to a VXLAN GPE VTEP, use the following guidelines.

• A VXLAN VTEP conforms to VXLAN frame format and uses UDP destination port
4789 when sending traffic to a VXLAN GPE VTEP.

• As per VXLAN, reserved bits 5 and 7, VXLAN GPE P and O-bits respectively must be
set to zero.

• The remaining reserved bits must be zero, including the VXLAN GPE version field,
bits 2 and 3.

• The encapsulated payload must be Ethernet.

Connecting a VXLAN GPE VTEP to a VXLAN VTEP
To connect a VXLAN-GPE VTEP to a VXLAN-VTEP, use the following guidelines.

• Do not encapsulate non-Ethernet frames to a VXLAN VTEP.
• Conform to VXLAN frame format: set the P bit to 0, the Next Protocol to 0 and use

UDP destination port 4789.
• A VXLAN GPE VTEP MUST also set O = 0 and Ver = 0 when encapsulating Ethernet

frames to VXLAN VTEP.
• The receiving VXLAN VTEP will treat the packet as a VXLAN packet.

Note: With VXLAN GPE, issues such as spoofing, flooding, and traffic redirection are
dependent on the particular protocol payload encapsulated.

IP Infusion Inc. Proprietary

Tunnels Configuration Guide | 7 - VXLAN Tunnels | 67

Static VXLAN Tunnels
Static VXLAN tunnels connect two VTEPs in a given environment. Static VXLAN tunnels
are the simplest deployment mechanism for small scale environments and are interoperable
with other vendors that adhere to VXLAN standards. You must specify which VTEPs are in
a particular VNI.

Note: DANOS-Vyatta edition supports only static VXLAN tunnels, not dynamic VXLAN
tunnels. Dynamic VXLAN tunnels require an IP multicast-listener on the tunnel endpoint
nodes to detect multicast traffic. However, IP multicast is not enabled is some networks due
to security and performance considerations. A static VXLAN configuration provides most of
the same benefits available with a dynamic VXLAN configurations.

IP Infusion Inc. Proprietary

Chapter 8. VXLAN Configuration

VXLAN Tunnel Configuration
In the following example, Vyatta routers R1 and R2 are configured as VTEPs. H1 and H2
are hosts that are connected to R1 and R2 and the hosts communicate with each other over
the VXLAN tunnel.
The VXLAN tunnel is established between the two VTEPs and it runs over a normal IP
transport layer.
In this example, the two VTEPs are on the same subnet (10.10.2.x/24 network), but they do
no have to be. The VTEPs can be on any subnet as long as they are reachable via normal
routing protocols.

Figure 6. VXLAN configuration

The hosts, H1 and H2 are on the overlay network. (1.1.1.0/24)
The VTEP, R1 is directly connected to H1; and the second VTEP, R2, is directly connected
to H2. The transport network is 10.10.2.0/24.
The VXLAN tunnel and the interface connecting each host are members of a bridge (br1) on
each router.
H1 and H2 can ping each other over the VXLAN tunnel, because the packets are bridged
across the VXLAN tunnel.
This is a simple, traditional VXLAN tunnel. The full L2 payload is carried over the tunnel.

IP Infusion Inc. Proprietary

Tunnels Configuration Guide | 8 - VXLAN Configuration | 69

Configuring the interface on Host1
Configure an interface on Host1 to connect to the bridge domain on R1.

Table 10. Configuring the interface on Host1
Step Command

Specify the interface that connects Host1 to the bridge domain
on R1.

vyatta@Host1 #set interfaces dataplane dp0p1s1 address
 1.1.1.1/24

Configuring a VXLAN Tunnel on R1
The following table shows the commands to configure a VXLAN tunnel on R1.

Table 11. Configuring a VXLAN Tunnel on R1
Step Command

Specify the bridge domain address for traffic coming from H1, vyatta@R1#set interfaces bridge br1 address
 1.1.1.2/24

Specify that traffic transmitted between R1 and H1 uses interface dp0p1s1
and is associated with bridge br1.

vyatta@R1#set interfaces dataplane dp0p1s1
 bridge-group bridge br1

Specify that interface dp0p1s2 connects to IP address 10.10.2.2.24 as the
source VTEP for R1.

vyatta@R1#set interfaces dataplane dp0p1s2
 address 10.10.2.2/24

Specify that tunnel tun0 is to be used for bridge-group br1 vyatta@R1# set interfaces tunnel tun0
 bridge-group bridge br1

Specify that the tunnel tun0 is a VXLAN tunnel. vyatta@R1# set interfaces tunnel tun0
 encapsulation vxlan

Specify the local IP address to be used by the tunnel. vyatta@R1# set interfaces tunnel tun0 local-ip
 10.10.2.2

Specify the remote IP address to be used by the tunnel. vyatta@R1# set interfaces tunnel tun0
 remote-ip 10.10.2.3

Specify the VXLAN ID of the tunnel tun0. vyatta@R1#set interfaces tunnel tun0 vxlan-id
 5000

Configuring a VXLAN Tunnel on R2
The following table shows the commands to configure a VXLAN tunnel on R2.

Table 12. Configuring a VXLAN Tunnel on R2
Step Command

Specify the bridge domain address. vyatta@R2#set interfaces bridge br1 address
 1.1.1.3/24

IP Infusion Inc. Proprietary

70 | Tunnels Configuration Guide | 8 - VXLAN Configuration

Table 12. Configuring a VXLAN Tunnel on R2 (continued)
Step Command

Specify that traffic transmitted between R2 and H1 uses interface dp0p1s2
and is associated with bridge br1

vyatta@R2#set interfaces dataplane dp0p1s2
 bridge-group bridge br1

Specify that interface dp0p1s1 connects to IP address 10.10.2.3.24 as the
source VTEP for R2.

vyatta@R2#set interfaces dataplane dp0p1s1
 address 10.10.2.3/24

Specify that tunnel tun0 is to be used for bridge-group br1 vyatta@R2# set interfaces tunnel tun0
 bridge-group bridge br1

Specify that the tunnel tun0 is a VXLAN tunnel. vyatta@R2# set interfaces tunnel tun0
 encapsulation vxlan

Specify the local IP address to be used by the tunnel. vyatta@R2# set interfaces tunnel tun0 local-ip
 10.10.2.3

Specify the remote IP address to be used by the tunnel. vyatta@R2# set interfaces tunnel tun0
 remote-ip 10.10.2.2

Specify the VXLAN ID of the tunnel tun0. vyatta@R2#set interfaces tunnel tun0 vxlan-id
 5000

Configuring the interface on Host2
Configure an interface on Host2 to connect to the bridge domain on R2.

Table 13. Configuring the interface on Host2
Step Command

Specify the interface that connects Host2 to the bridge domain
on R2

vyatta@Host2#set interfaces dataplane dp0p1s1 address
 1.1.1.4/24

VXLAN-GPE Tunnel Configuration
In the following example, Vyatta routers R1 and R2 are configured as VTEPs. H1 and H2
are hosts that are connected to R1 and R2 and the hosts communicate with each other over
the VXLAN-GPE tunnel. In this case, the VXLAN-GPE tunnel is an L3 interface with its own
IP address.
In this topography, the tunnel is terminated on the VTEP and the traffic is routed in to the
tunnel (rather than being bridged into the tunnel as it was for the basic VXLAN).
The VXLAN tunnel is established between the two VTEPs and it runs over a normal IP
transport layer.

IP Infusion Inc. Proprietary

Tunnels Configuration Guide | 8 - VXLAN Configuration | 71

Figure 7. VXLAN-GPE configuration

Configuring the interface on Host1
Configure an interface on Host1 to connect to the bridge domain on R1.

Table 14. Configuring the interface on Host1
Step Command

Specify the interface that connects Host1 to R1. vyatta@Host1#set interfaces dataplane dp0p1s1 address
 10.10.1.1/24

Create a static route to Host2 from Host1, R 1 is designated as
the next hop.

vyatta@Host1#set protocols static route 10.10.3.0/24
 next-hop 10.10.1.2

Configuring a VXLAN-GPE Tunnel on R1
The following table shows the commands to configure a VXLAN-GPE tunnel on R1.

Table 15. Configuring a VXLAN-GPE Tunnel on R1
Step Command

Specify the interface for communications from Host1 to R1. vyatta@R1# set interfaces dataplane dp0p1s1 address
 10.10.1.2/24

Specify the interface for communications from R1 to the IP
transport network.

vyatta@R1#set interfaces dataplane dp0p1s2 address
 10.10.2.2/24

Specify the local IP address of the tunnel, tun0. vyatta@R1#set interfaces tunnel tun0 address 10.5.5.2/24

IP Infusion Inc. Proprietary

72 | Tunnels Configuration Guide | 8 - VXLAN Configuration

Table 15. Configuring a VXLAN-GPE Tunnel on R1 (continued)
Step Command

Specify that the tunnel tun0 is a VXLAN-GPE tunnel. vyatta@R1# set interfaces tunnel tun0 encapsulation vxlan-gpe

Specify the local IP address of R1 in its connection to the IP
transport network.

vyatta@R1# set interfaces tunnel tun0 local-ip 10.10.2.2

Specify the IP address of R2 as its destination. vyatta@R1# set interfaces tunnel tun0 remote-ip 10.10.2.3

Specify the VXLAN ID of the tunnel tun0. vyatta@R1#set interfaces tunnel tun0 vxlan-id 5000

Specify that the static route from R1 to R2 uses the tunnel
tun0 as its next-hop.

vyatta@R1#set protocols static interface-route 10.10.3.0/24
 next-hop-interface tun0

Configuring a VXLAN-GPE Tunnel on R2
The following table shows the commands to configure a VXLAN-GPE tunnel on R2.

Table 16. Configuring a VXLAN-GPE Tunnel on R2
Step Command

Specify interface for communications from Host2 to R2. vyatta@R2#set interfaces dataplane dp0p1s2 address
 10.10.3.3/24

Specify the interface that connects R2 to the IP transport
network.

vyatta@R2# set interfaces dataplane dp0p1s1 address
 10.10.2.3/24

Specify the local IP address of the tunnel, tun0. vyatta@R2#set interfaces tunnel tun0 address 10.5.5.2/24

Specify that the tunnel tun0 is a VXLAN-GPE tunnel. vyatta@R2# set interfaces tunnel tun0 encapsulation vxlan-gpe

Specify the local IP address of R2 in its connection to the IP
transport network.

vyatta@R2# set interfaces tunnel tun0 local-ip 10.10.2.3

Specify the remote IP address of R2. vyatta@R2# set interfaces tunnel tun0 remote-ip 10.10.2.2

Specify the VXLAN ID of the tunnel tun0. vyatta@R2#set interfaces tunnel tun0 vxlan-id 5000

Specify that the static route from R2 to R1 uses the tunnel
tun0 as its next-hop.

vyatta@R1#set protocols static interface-route 10.10.1.0/24
 next-hop-interface tun0

Configuring the interface and route on Host2
Configure an interface on Host2 to R2 and a static route

IP Infusion Inc. Proprietary

Tunnels Configuration Guide | 8 - VXLAN Configuration | 73

Table 17. Configuring the interface and route on Host2
Step Command

Specify the interface that connects Host2 to R2. vyatta@Host2# set interfaces dataplane dp0p1s1 address
 10.10.3.4/24

Specify that the static route from Host2 to Host1 uses the tunnel
tun0 as its next-hop.

vyatta@Host2#set protocols static route 10.10.1.0/24
 next-hop 10.10.3.3

IP Infusion Inc. Proprietary

Chapter 9. VXLAN Commands

clear vxlan mac
Removes forwarding entries from the VXLAN forwarding database.

• If no interface is specified, all dynamic entries are cleared.
• If an interface is specified without a MAC address, all dynamic entries learned on the

specified interface are cleared.
• If both an interface and a MAC address are specified, only the specified entry is

removed.

clear vxlan mac [interface if-name] [mac mac-address]

if-name
Name of VXLAN interface on which the clear operation is to be performed.

mac
MAC address for which forwarding information should be removed.

Operational mode

set interfaces tunnel transport multicast-group
Enables the interface of a specified VXLAN tunnel to send traffic to a multicast group using
an IPv4 or IPv6 address.

set interfaces tunnel tunx transport multicast-group { ipv4-address | ipv6-
address }

delete interfaces tunnel tunx transport multicast-group { ipv4-address | ipv6-
address }

show interfaces tunnel tunx transport multicast-group

tunx
Identifier of a tunnel interface.

ipv4-address
IPv4 address.

ipv6-address
IPv6 address.

Configuration mode

interfaces {
 tunnel tunx {

IP Infusion Inc. Proprietary

Tunnels Configuration Guide | 9 - VXLAN Commands | 75

 transport multicast-group {
 ipv4-address
 ipv6-address
 }
 }

Use the set form of this command to enable the VXLAN tunnel to handle multicast traffic
between VXLANs.
Use the delete form of this command to delete the multicast capability for a specified
VXLAN tunnel interface.
Use the show form of this command to display whether this VXLAN multicast group is for
IPv4 or IPv6 traffic.

set interfaces tunnel transport routing-instance
Enables the interface of a specified VXLAN tunnel to send traffic using the specified virtual
routing and forwarding routing (VRF) instance.

set interfaces tunnel tunx transport routing-instance vrf-name

delete interfaces tunnel tunx transport routing-instance vrf-name

show interfaces tunnel tunx transport routing-instance

tunx
Identifier of a tunnel interface.

vrf-name
VRF instance to which the transport network belongs.

Configuration mode

interfaces {
 tunnel tunx {
 transport routing-instance {
 vrf-name
 }
 }

Use the set form of this command to direct the specified VXLAN tunnel through the
specified VRF.
Use the delete form of this command to remove the specified VRF for a specified VXLAN
tunnel interface.
Use the show form of this command to display the VRF for a specified tunnel.

IP Infusion Inc. Proprietary

76 | Tunnels Configuration Guide | 9 - VXLAN Commands

set interfaces tunnel vxlan-id
Specifies the VXLAN ID of the specified tunnel.

set interfaces tunnel tunx vxlan-id vxlan-identifier

delete interfaces tunnel tunx vxlan-id vxlan-identifier

show interfaces tunnel tunx vxlan-id

tunx
Identifier of a tunnel interface.

vxlan-identifier
VXLAN identifier in the range 0-16777216.

Configuration mode

interfaces {
 tunnel tunx {
 vxlan-id {
 }
 }

Use the set form of this command to create the VXLAN tunnel.
Use the delete form of this command to delete the specified VXLAN tunnel.
Use the show form of this command to display whether the VXLAN tunnel.

set protocols static vxlan-mac interface mac remote-ip
Creates a static VXLAN tunnel.

set protocols static vxlan-mac interface if-name mac mac-addr remote-ip ip-address
[vni vni]

delete protocols static vxlan-mac interface if-name mac mac-addr remote-ip ip-
address [vni vni]

show protocols static vxlan-mac interface if-name

if-name
VXLAN interface to which the static entry applies.

mac-addr
MAC address of a remote node.

ip-address
IPv4 or IPv6 address of remote VTEP.

IP Infusion Inc. Proprietary

Tunnels Configuration Guide | 9 - VXLAN Commands | 77

vni
VXLAN network identifier to use to reach the remote node.

Configuration mode

interfaces {
 static {
 vxlan {
 interface {
 mac
 remote-ip
 vni
 }
 }
 }
}

Use the set form of this command to create a static VXLAN tunnel.
Use the delete form of this command to remove the specified static VXLAN tunnel.
Use the show form of this command to display a static VXLAN tunnel.

show vxlan mac
Displays the VXLAN forwarding database either for all VXLAN interfaces or just for the
specified interface/mac.

show vxlan mac [interface if-name] [mac mac-address]

if-name
Name of VXLAN interface on which the clear operation is to be performed.

mac
MAC address for which forwarding information should be removed.

Operational mode

vyatta@vm-vxlan-2:~$ show vxlan mac
Interface Mac Address Type VNI IP Address
tun2 3e:92:72:c6:64:84 D 51000 10.10.1.1
tun2 42:b5:4:0:1:3 D 51000 10.10.1.1

IP Infusion Inc. Proprietary

78 | Tunnels Configuration Guide | 9 - VXLAN Commands

Table 18. show vxlan mac output
Field Explanation

Interface VXLAN interface on which the MAC entry is learned/programmed

MAC Address Ethernet MAC address of remote node

Type D(ynamic) or S(tatic) or L(ocal) MAC address entry
D: Learned from the packet flows between the endpoints
S: Specified in the configuration
L: A local made address

VNI VXLAN Network Identifier used to reach the remote nodes

IP Address IPv4 or IPv6 address of the VXLAN Tunnel End Point (VTEP)

show vxlan statistics
Displays packet counters and counts of any errors that have occurred during VXLAN setup
or forwarding. Only non-zero counter values are displayed.

show vxlan statistics

Operational mode

vyatta@vm-vxlan-2:~$ show vxlan statistics
Output drops - ARP Failed : 5
Input drops - Bad Header : 3
Input drops - Bad Payload : 1
Input drops - Options : 2
Input drops - No headroom : 4
Input drops - VNI not found : 2
Input packets : 10
Output drops - ND failed : 1
Output drops : 3
Output drops - Encap failed : 2
Output drops - Unknown payload : 1
Output packets : 10

IP Infusion Inc. Proprietary

Chapter 10. VRF support

VRF support for IPsec and GRE
The router provides the following support for IPsec Virtual Tunnel Interface (VTI) and GRE
tunnels.
The inner or encapsulated address is configurable for each routing instance, provided that
the tunnel interface is bound to a routing instance.

• Assign the IPsec site-to-site configuration to a VTI, which assigns the configuration to
a routing-instance.

• Assign the GRE configuration to the interface or interfaces that make up the routing
instance.

Command support for VRF routing instances
VRF allows a router to support multiple routing tables, one for each VRF routing instance.
Some commands in this guide support VRF and can be applied to particular routing
instances.
Use the guidelines in this section to determine correct syntax when adding VRF routing
instances to commands. For more information about VRF, refer to Basic Routing
Configuration Guide. This guide includes an overview of VRF, VRF configuration examples,
information about VRF-specific features, and a list of commands that support VRF routing
instances.

Adding a VRF routing instance to a Configuration mode command
For most Configuration mode commands, specify the VRF routing instance at the beginning
of a command. Add the appropriate VRF keywords and variable to follow the initial action
(set, show, or delete) and before the other keywords and variables in the command.

Configuration mode example: syslog
The following command configures the syslog logging level for the specified syslog host.
The command does not include a VRF routing instance, so the command applies to the
default routing instance.

vyatta@R1# set system syslog host 10.10.10.1 facility all level debug
vyatta@R1# show system syslog
syslog {
 host 10.10.10.1 {
 facility all {
 level debug
 }
 }

IP Infusion Inc. Proprietary

80 | Tunnels Configuration Guide | 10 - VRF support

}

The following example shows the same command with the VRF routing instance (GREEN)
added. Notice that routing routing-instance GREEN has been inserted between the
basic action (set in the example) and the rest of the command. Most Configuration mode
commands follow this convention.

vyatta@R1# set routing routing-instance GREEN system syslog host 10.10.10.1
 facility all level debug
vyatta@R1# show routing
routing {
 routing-instance GREEN {
 system {
 syslog {
 host 11.12.13.2:514 {
 facility all {
 level debug
 }
 }
 }
 }
 }
}

Configuration mode example: SNMP
Some features, such as SNMP, are not available on a per-routing instance basis but
can be bound to a specific routing instance. For these features, the command syntax
is an exception to the convention of specifying the routing instance at the beginning of
Configuration mode commands.
The following example shows how to configure the SNMPv1 or SNMPv2c community and
context for the RED and BLUE routing instances. The first two commands specify the RED
routing instance as the context for community A and BLUE routing instance as the context
for community B. The subsequent commands complete the configuration.
For more information about configuring SNMP, refer to Remote Management Configuration
Guide.

vyatta@R1# set service snmp community commA context RED
vyatta@R1# set service snmp community commB context BLUE
vyatta@R1# set service snmp view all oid 1
vyatta@R1# set service snmp community commA view all
vyatta@R1# set service snmp community commB view all
vyatta@R1# show service snmp community
 community commA {
 context RED
 view all
 }
 community commB {

IP Infusion Inc. Proprietary

Tunnels Configuration Guide | 10 - VRF support | 81

 context BLUE
 view all
 }
[edit]
vyatta@vyatta#

Adding a VRF routing instance to an Operational mode command
The syntax for adding a VRF routing instance to an Operational mode command varies
according to the type of command parameters:

• If the command does not have optional parameters, specify the routing instance at the
end of the command.

• If the command has optional parameters, specify the routing instance after the
required parameters and before the optional parameters.

Operational mode examples without optional parameters
The following command displays dynamic DNS information for the default routing instance.

vyatta@vyatta:~$ show dns dynamic status

The following command displays the same information for the specified routing instance
(GREEN). The command does not have any optional parameters, so the routing instance is
specified at the end of the command.

vyatta@vyatta:~$ show dns dynamic status routing-instance GREEN

Operational mode example with optional parameters
The following command obtains multicast path information for the specified host (10.33.2.5).
A routing instance is not specified, so the command applies to the default routing instance.

vyatta@vyatta:~$ mtrace 10.33.2.5 detail

The following command obtains multicast path information for the specified host (10.33.2.5)
and routing instance (GREEN). Notice that the routing instance is specified before the
optional detail keyword.

vyatta@vyatta:~$ mtrace 10.33.2.5 routing-instance GREEN detail

Operational mode example output: SNMP
The following SNMP show commands display output for routing instances.

IP Infusion Inc. Proprietary

82 | Tunnels Configuration Guide | 10 - VRF support

vyatta@vyatta:~$ show snmp routing-instance
Routing Instance SNMP Agent is Listening on for Incoming Requests:
Routing-Instance RDID
----------------- ----
RED 5

vyatta@vyatta:~$ show snmp community-mapping
SNMPv1/v2c Community/Context Mapping:
Community Context
--------- -------
commA 'RED'
commB 'BLUE'
deva 'default'

vyatta@vyatta:~$ show snmp trap-target
SNMPv1/v2c Trap-targets:
Trap-target Port Routing-Instance Community
----------- ---- ---------------- ---------
1.1.1.1 'RED' 'test'

vyatta@vyatta:~$ show snmp v3 trap-target
SNMPv3 Trap-targets:
Trap-target Port Protocol Auth Priv Type EngineID
 Routing-Instance User
----------- ---- -------- ---- ---- ---- --------
 ---------------- ----
2.2.2.2 '162' 'udp' 'md5 'infor
 'BLUE' 'test'

IP Infusion Inc. Proprietary

Chapter 11. List of Acronyms

Acronym Description

ACL access control list

ADSL Asymmetric Digital Subscriber Line

AH Authentication Header

AMI Amazon Machine Image

API Application Programming Interface

AS autonomous system

ARP Address Resolution Protocol

AWS Amazon Web Services

BGP Border Gateway Protocol

BIOS Basic Input Output System

BPDU Bridge Protocol Data Unit

CA certificate authority

CCMP AES in counter mode with CBC-MAC

CHAP Challenge Handshake Authentication Protocol

CLI command-line interface

DDNS dynamic DNS

DHCP Dynamic Host Configuration Protocol

DHCPv6 Dynamic Host Configuration Protocol version 6

DLCI data-link connection identifier

DMI desktop management interface

DMVPN dynamic multipoint VPN

DMZ demilitarized zone

DN distinguished name

DNS Domain Name System

DSCP Differentiated Services Code Point

DSL Digital Subscriber Line

eBGP external BGP

EBS Amazon Elastic Block Storage

EC2 Amazon Elastic Compute Cloud

EGP Exterior Gateway Protocol

ECMP equal-cost multipath

ESP Encapsulating Security Payload

FIB Forwarding Information Base

FTP File Transfer Protocol

IP Infusion Inc. Proprietary

84 | Tunnels Configuration Guide | 11 - List of Acronyms

Acronym Description

GRE Generic Routing Encapsulation

HDLC High-Level Data Link Control

I/O Input/Output

ICMP Internet Control Message Protocol

IDS Intrusion Detection System

IEEE Institute of Electrical and Electronics Engineers

IGMP Internet Group Management Protocol

IGP Interior Gateway Protocol

IPS Intrusion Protection System

IKE Internet Key Exchange

IP Internet Protocol

IPOA IP over ATM

IPsec IP Security

IPv4 IP Version 4

IPv6 IP Version 6

ISAKMP Internet Security Association and Key Management Protocol

ISM Internet Standard Multicast

ISP Internet Service Provider

KVM Kernel-Based Virtual Machine

L2TP Layer 2 Tunneling Protocol

LACP Link Aggregation Control Protocol

LAN local area network

LDAP Lightweight Directory Access Protocol

LLDP Link Layer Discovery Protocol

MAC medium access control

mGRE multipoint GRE

MIB Management Information Base

MLD Multicast Listener Discovery

MLPPP multilink PPP

MRRU maximum received reconstructed unit

MTU maximum transmission unit

NAT Network Address Translation

NBMA Non-Broadcast Multi-Access

ND Neighbor Discovery

NHRP Next Hop Resolution Protocol

NIC network interface card

IP Infusion Inc. Proprietary

Tunnels Configuration Guide | 11 - List of Acronyms | 85

Acronym Description

NTP Network Time Protocol

OSPF Open Shortest Path First

OSPFv2 OSPF Version 2

OSPFv3 OSPF Version 3

PAM Pluggable Authentication Module

PAP Password Authentication Protocol

PAT Port Address Translation

PCI peripheral component interconnect

PIM Protocol Independent Multicast

PIM-DM PIM Dense Mode

PIM-SM PIM Sparse Mode

PKI Public Key Infrastructure

PPP Point-to-Point Protocol

PPPoA PPP over ATM

PPPoE PPP over Ethernet

PPTP Point-to-Point Tunneling Protocol

PTMU Path Maximum Transfer Unit

PVC permanent virtual circuit

QoS quality of service

RADIUS Remote Authentication Dial-In User Service

RHEL Red Hat Enterprise Linux

RIB Routing Information Base

RIP Routing Information Protocol

RIPng RIP next generation

RP Rendezvous Point

RPF Reverse Path Forwarding

RSA Rivest, Shamir, and Adleman

Rx receive

S3 Amazon Simple Storage Service

SLAAC Stateless Address Auto-Configuration

SNMP Simple Network Management Protocol

SMTP Simple Mail Transfer Protocol

SONET Synchronous Optical Network

SPT Shortest Path Tree

SSH Secure Shell

SSID Service Set Identifier

IP Infusion Inc. Proprietary

86 | Tunnels Configuration Guide | 11 - List of Acronyms

Acronym Description

SSM Source-Specific Multicast

STP Spanning Tree Protocol

TACACS+ Terminal Access Controller Access Control System Plus

TBF Token Bucket Filter

TCP Transmission Control Protocol

TKIP Temporal Key Integrity Protocol

ToS Type of Service

TSS TCP Maximum Segment Size

Tx transmit

UDP User Datagram Protocol

VHD virtual hard disk

vif virtual interface

VLAN virtual LAN

VPC Amazon virtual private cloud

VPN virtual private network

VRRP Virtual Router Redundancy Protocol

WAN wide area network

WAP wireless access point

WPA Wired Protected Access

IP Infusion Inc. Proprietary

	Tunnels Configuration Guide
	Contents
	Chapter 1. Copyright Statement
	Chapter 2. Preface
	Document conventions
	Notes, cautions, and warnings
	Text formatting conventions
	Command syntax conventions

	Chapter 3. About This Guide
	Chapter 4. Tunnels Overview
	Overview
	GRE
	Applications for GRE
	Bridging with GRE
	Multipoint GRE
	Supported standards for GRE

	IP-in-IP
	Applications for IP-in-IP
	Supported standards for IP-in-IP

	SIT
	Applications for SIT
	Supported standards for SIT

	Securing tunnels
	DHCP enabled interfaces as local tunnel endpoints
	Using tunnels to extend IPsec capability

	Chapter 5. Tunnel Configuration Examples
	Before you begin
	GRE tunnel connecting remote networks
	Configure WEST
	Configure EAST

	A GRE tunnel with authentication
	Configure WEST
	Configure EAST

	Multipoint GRE tunnels
	Configure HUB
	Configure SPOKE1
	Configure SPOKE2

	Tunneling IPv6 traffic in IPv4 with SIT
	Create a SIT tunnel
	Capture of a ping

	Chapter 6. Tunnel Commands
	Related tunnel commands
	clear interfaces tunnel counters
	interfaces tunnel
	interfaces tunnel address
	interfaces tunnel bfd template
	interfaces tunnel bridge-group
	interfaces tunnel description
	interfaces tunnel disable
	interfaces tunnel disable-link-detect
	interfaces tunnel encapsulation
	interfaces tunnel ip tcp-mss limit
	interfaces tunnel ip tcp-mss mtu
	interfaces tunnel ip tcp-mss mtu-minus
	interfaces tunnel ipv6
	interfaces tunnel ipv6 address
	interfaces tunnel ipv6 disable
	interfaces tunnel ipv6 disable-forwarding
	interfaces tunnel ipv6 dup-addr-detect-transmits
	interfaces tunnel ipv6 router-advert
	interfaces tunnel ipv6 tcp-mss limit
	interfaces tunnel ipv6 tcp-mss mtu
	interfaces tunnel ipv6 tcp-mss mtu-minus
	interfaces tunnel local-interface
	interfaces tunnel local-ip
	interfaces tunnel mtu
	interfaces tunnel multicast
	interfaces tunnel parameters ip ignore-df
	interfaces tunnel parameters ip key
	interfaces tunnel parameters ip tos
	interfaces tunnel parameters ip ttl
	interfaces tunnel parameters ipv6 encaplimit
	interfaces tunnel parameters ipv6 flowlabel
	interfaces tunnel parameters ipv6 hoplimit
	interfaces tunnel parameters ipv6 tclass
	interfaces tunnel path-mtu-discovery-disable
	interfaces tunnel remote-ip
	show interfaces tunnel

	Chapter 7. VXLAN Tunnels
	Overview
	Benefits of VXLAN Tunnels
	VXLAN as an Overlay Network
	VXLAN compared to VXLAN-GPE
	Fragmentation with VXLAN GPE
	Connecting a VXLAN VTEP to a VXLAN GPE VTEP
	Connecting a VXLAN GPE VTEP to a VXLAN VTEP
	Static VXLAN Tunnels

	Chapter 8. VXLAN Configuration
	VXLAN Tunnel Configuration
	Configuring the interface on Host1
	Configuring a VXLAN Tunnel on R1
	Configuring a VXLAN Tunnel on R2
	Configuring the interface on Host2

	VXLAN-GPE Tunnel Configuration
	Configuring the interface on Host1
	Configuring a VXLAN-GPE Tunnel on R1
	Configuring a VXLAN-GPE Tunnel on R2
	Configuring the interface and route on Host2

	Chapter 9. VXLAN Commands
	clear vxlan mac
	set interfaces tunnel transport multicast-group
	set interfaces tunnel transport routing-instance
	set interfaces tunnel vxlan-id
	set protocols static vxlan-mac interface mac remote-ip
	show vxlan mac
	show vxlan statistics

	Chapter 10. VRF support
	VRF support for IPsec and GRE
	Command support for VRF routing instances
	Adding a VRF routing instance to a Configuration mode command
	Configuration mode example: syslog
	Configuration mode example: SNMP
	Adding a VRF routing instance to an Operational mode command
	Operational mode examples without optional parameters
	Operational mode example with optional parameters
	Operational mode example output: SNMP

	Chapter 11. List of Acronyms

