

DANOS-Vyatta edition

Disaggregated Network Operating System Version 2009a

> Basic Routing Configuration Guide October 2020

Contents

Chapter 1. Copyright Statement	
Chapter 2. Preface	2
Document conventions	2
Chapter 3. About This Guide	
Chapter 4. Forwarding and Routing Commands	5
clear ip prefix-list	5
clear ipv6 prefix-list	5
monitor command	5
ping	
ping adaptive	7
ping allow-broadcast	10
ping audible	
ping bypass-route	15
ping count	
ping deadline	
ping ether-size	
ping flood	24
ping interface	
ping interval	
ping mark	31
ping mtu-discovery	
ping no-loopback	
ping numeric	
ping pattern	40
ping quiet	
ping record-route	
ping size	46
ping tos	
ping ttl	
ping verbose	

protocols nsm log	. 54
protocols nsm log ha	. 55
reset ip route kernel	. 56
reset ipv6 route kernel	. 56
resources group address-group	. 56
resources group icmp-group	. 57
resources group icmpv6-group	58
resources group port-group	. 59
show ip forwarding	. 61
show ip route	.61
show ip route longer-prefixes	. 62
show ip route connected	. 63
show ip route forward	63
show ip route kernel	64
show ip route static	. 65
show ip route summary	65
show ip route supernets-only	. 65
show ip route table	66
show ip route variance	. 66
show ip route variance console	. 67
show ipv6 route	. 68
show ipv6 route longer-prefixes	. 69
show ipv6 route bgp	69
show ipv6 route connected	. 69
show ipv6 route forward	69
show ipv6 route kernel	. 70
show ipv6 route ripng	70
show ipv6 route static	. 70
show ipv6 route variance	. 70
show ipv6 route variance console	71
show monitoring protocols rib	. 72
traceroute as-path	72
traceroute bypass-routing	.74

traceroute debug-socket	76
traceroute first-ttl	79
traceroute gateway	81
traceroute icmp-echo	83
traceroute icmp-extensions	85
traceroute interface	87
traceroute max-ttl	89
traceroute interval	92
traceroute max-ttl	94
traceroute no-fragment	96
traceroute num-queries	
traceroute port	100
traceroute seq-queries	
traceroute source-addr	105
traceroute tcp-syn	
traceroute tos	
traceroute version	
traceroute wait-time	
traceroute	116
traceroute	116
Chapter 5. ECMP	118
ECMP overview	
Chapter 6. ECMP Commands	119
protocols ecmp disable	119
protocols ecmp maximum-paths	
protocols ecmp mode	
show dataplane route	
show dataplane route6	
Chapter 7. Static Routes	122
Static route configuration	122
Static routes overview	
Configuring static routes	122
Creating floating static routes	

	Showing static routes in the routing table	124
	Static IPv6 route configuration	124
	Verify that IPv6 forwarding is enabled	125
	Add the default IPv6 route	126
	Add a static IPv6 route	126
	Confirm connectivity	127
	Static Route Tag Configuration	127
Cha	apter 8. Static Route Commands	134
	protocols static interface-route description	134
	protocols static interface-route next-hop-interface	134
	protocols static interface-route next-hop-routing-instance next-hop-interface	136
	protocols static interface-route6 description	137
	protocols static interface-route6 next-hop-interface	138
	protocols static interface-route6 next-hop-routing-instance next-hop-interface	140
	protocols static route blackhole	141
	protocols static route description	142
	protocols static route next-hop	143
	protocols static route next-hop-routing-instance next-hop	145
	protocols static route unreachable	146
	protocols static route6 blackhole	147
	protocols static route6 description	148
	protocols static route6 next-hop	149
	protocols static route6 next-hop-routing-instance next-hop	150
	protocols static route6 unreachable	152
	protocols static table description	153
	protocols static table interface-route description	153
	protocols static table interface-route next-hop-interface	154
	protocols static table interface-route6 description	156
	protocols static table interface-route6 next-hop-interface	157
	protocols static table route blackhole	158
	protocols static table route description	159
	protocols static table route next-hop	160
	protocols static table route6 blackhole	162

protocols static table route6 description	163
protocols static table route6 next-hop	
Chapter 9. VRF	166
VRF overview	166
Management services	167
Feature-specific VRF support	169
VRF support for DNS	169
VRF support for DHCP	170
VRF support for flow monitoring	172
VRF support for NTP	172
VRF support for firewall	173
VRF support for RADIUS authentication	173
VRF support for TACACS+	174
VRF support for SNMP	175
VRF support for SSH	
VRF support for Telnet	177
VRF support for syslog	178
VRF support for IPsec and GRE	179
VRF support for ALG	179
VRF support for BGP	179
VRF support for OSPF and OSPFv3	180
VRF support for RIP and RIPng	
VRF support for multicast	182
VRF support for BFD	183
VRF support for VRRP	184
VRF support for file transfer client connections	185
VRF support for TWAMP	185
VRF configuration examples	186
Binding interfaces to routing instances	
Configuring static routes on a routing instance	187
Configuring policy-based routing on a routing instance	
Configuring OSPFv3 on routing instances	191
Configuring SNMP on a routing instance	192

Command support for VRF routing instances	194
List of commands that support VRF	198
List of configuration commands	198
List of operational commands	263
Chapter 10. VRF Commands	297
routing-instance	297
routing routing-instance description	297
routing routing-instance instance-name	298
routing routing-instance interface	299
Chapter 11. Source Routes	300
Source routing example	300
Chapter 12. IPv6	306
IPv6 Overview	306
IPv6 Configuration Examples	310
Chapter 13. List of Acronyms	314

Chapter 1. Copyright Statement

© 2020 IP Infusion Inc. All Rights Reserved.

This documentation is subject to change without notice. The software described in this document and this documentation are furnished under a license agreement or nondisclosure agreement. The software and documentation may be used or copied only in accordance with the terms of the applicable agreement. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or any means electronic or mechanical, including photocopying and recording for any purpose other than the purchaser's internal use without the written permission of IP Infusion Inc.

IP Infusion Inc. 3965 Freedom Circle, Suite 200 Santa Clara, CA 95054 +1 408-400-1900

http://www.ipinfusion.com/.

For support, questions, or comments via E-mail, contact:

support@ipinfusion.com.

Trademarks:

IP Infusion is a trademark of IP Infusion. All other trademarks, service marks, registered trademarks, or registered service marks are the property of their respective owners.

Use of certain software included in this equipment is subject to the IP Infusion, Inc. End User License Agreement at <u>http://www.ipinfusion.com/license</u>. By using the equipment, you accept the terms of the End User License Agreement.

Chapter 2. Preface

Document conventions

The document conventions describe text formatting conventions, command syntax conventions, and important notice formats used in this document.

Notes, cautions, and warnings

Notes, cautions, and warning statements may be used in this document. They are listed in the order of increasing severity of potential

hazards.

Note: A Note provides a tip, guidance, or advice, emphasizes important information, or provides a reference to related information.

Attention: An Attention statement indicates a stronger note, for example, to alert you when traffic might be interrupted or the device might reboot.

CAUTION: A Caution statement alerts you to situations that can be potentially hazardous to you or cause damage to hardware, firmware, software, or data.

DANGER: A Danger statement indicates conditions or situations that can be potentially lethal or extremely hazardous to you. Safety labels are also attached directly to products to warn of these conditions or situations.

Text formatting conventions

Text formatting conventions such as boldface, italic, or Courier font are used to highlight specific words or phrases.

Format	Description
bold text	Identifies command names. Identifies keywords and operands.
<i>italic</i> text	Identifies emphasis. Identifies variables. Identifies document titles.
Courier font	Identifies CLI output. Identifies command syntax examples.

Command syntax conventions

Bold and italic text identify command syntax components. Delimiters and operators define groupings of parameters and their logical relationships.

Convention	Description
bold text	Identifies command names, keywords, and command options.
<i>italic</i> text	Identifies a variable.
[]	Syntax components displayed within square brackets are optional. Default responses to system prompts are enclosed in square brackets.
{ x y z }	A choice of required parameters is enclosed in curly brackets separated by vertical bars. You must select one of the options.
x y	A vertical bar separates mutually exclusive elements.
< >	Nonprinting characters, for example, passwords, are enclosed in angle brackets.
	Repeat the previous element, for example, member[member].
١	Indicates a "soft" line break in command examples. If a backslash separates two lines of a command input, enter the entire command at the prompt without the backslash.

Chapter 3. About This Guide

This guide describes how to configure forwarding and routing in DANOS-Vyatta edition.

Chapter 4. Forwarding and Routing Commands

clear ip prefix-list

Clears statistics for or the status of a prefix list.

```
clear ip prefix-list [ list-name [ ipv4net ] ]
```

Statistics for or the status of all prefix lists is cleared.

list-name

Optional. A prefix list.

ipv4net

Optional. A network.

Operational mode

Use this command to clear statistics for or the status of a prefix list.

clear ipv6 prefix-list

Clears statistics for or the status of an IPv6 prefix list.

```
clear ipv6 prefix-list [ list-name [ ipv6net ] ]
```

Statistics for or the status of all IPv6 prefix lists is cleared.

list-name

Optional. An IPv6 prefix list.

ipv6net

Optional. An IPv6 network.

Operational mode

Use this command to clear statistics for or the status of an IPv6 prefix list.

monitor command

Monitors a traceroute command.

monitor command traceroute-command

run monitor command traceroute-command

traceroute-command

The traceroute command to be monitored. The traceroute command must be enclosed in quotation marks.

Operational mode

Configuration mode

Use this command to display the output of a traceroute command. The display information is refreshed every two seconds.

Use the run form of this command in configuration mode.

ping

Sends Internet Control Message Protocol (ICMP) ECHO_REQUEST packets to a network host.

ping { ipv4_address | ipv6_address | hostname }

ipv4_address

Pings the IPv4 address of the host.

ipv6_address

Pings the IPv6 address of the host.

hostname

A host being pinged. This keyword is used when the host is specified as a host name rather than as an IP address.

Operational mode

The ping command tests whether a network host is reachable.

The ping command uses the ECHO_REQUEST datagram (ping) of the ICMP protocol to get an ICMP ECHO_RESPONSE from a host or gateway. ECHO_REQUEST datagrams have an IP and an ICMP header, followed by a *struct timeval* data type and then an arbitrary number of pad bytes that are used to fill the packet.

The host is specified either as host name (if DNS is being used on the network) or as an IPv4 or IPv6 address. If a host name is specified and neither the **ipv4** nor **ipv6** keyword is used, the IPv4 or IPv6 address associated with the host name is pinged, depending on which address is resolved first.

When using the ping command for fault isolation, enter the command on the local host to verify that the local network interface is up and running. Then, ping hosts and gateways farther away. Round-trip times and packet-loss statistics are computed.

If duplicate packets are received, they are not included in the packet-loss calculation, although the round-trip time of these packets is used in calculating the minimum, average, and maximum round-trip times.

When the ping command is interrupted by typing <Ctrl>+c, a brief statistical summary is displayed.

This example shows how to test whether the network host, <u>www.google.com</u> is reachable.

```
vyatta@vyatta:~$ ping www.google.com
PING www.google.com (216.58.196.100) 56(84) bytes of data.
64 bytes from maa03s19-in-f4.1e100.net (216.58.196.100): icmp_req=1 ttl=54
time=42.3 ms
^C
--- www.google.com ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 42.364/42.364/42.364/0.000 ms
```

ping adaptive

Sets the interpacket interval adaptively such that the interpacket interval adjusts to roundtrip time.

ping { ipv4_address | ipv6_address | hostname } adaptive option

ipv4_address

The IPv4 address of the host.

ipv6_address

The IPv6 address of the host.

hostname

A host being pinged. This keyword is used when the host is specified as a host name rather than as an IP address.

adaptive

Sets the interpacket interval adaptively such that the interpacket interval adjusts to roundtrip time. The adaptive setting ensures that not more than one (or more, if preload is set) unanswered probes are present in the network.

option

Each of the following entries are considered options. These options can be issued consecutively, that is, in the same command line.

adaptive

Adaptively sets interpacket interval.

allow-broadcast

Allows you to ping broadcast address.

audible

Makes a beep sound on every ping, while the router pings for host details.

bypass-route

Bypasses normal routing tables during ping.

count

Specifies the number of ping requests to send.

deadline

Specifies the number of seconds before which ping expires.

ether-size

Matches the overall size of the data packet with the resultant size of the Layer 3 packet.

flood

Sends 100 ping requests each second.

interface

Specifies an interface that the device must use as the source address.

interval

Specifies the time in seconds for which the device must wait between ping requests.

mark

Specifies that the device must consider the ping request for special processing.

mtu-discovery

Specifies the path MTU discovery strategy.

no-loopback

Suppresses loop-back of multicast pings.

numeric

Does not resolve domain name system (DNS) names during ping.

pattern

Specifies the hexadecimal digit pattern to fill the packet.

quiet

Prints only the ping summary page.

record-route

Records the route that the packet takes.

size

Specifies the number of bytes to send for a ping request.

timestamp

Displays the timestamp during ping output.

tos

Marks packet with specified type of service (TOS).

ttl

Specifies the maximum packet life-time for a host.

verbose

Displays a detailed output for the ping command.

Operational mode

The ping command tests whether a network host is reachable.

The ping command uses the ECHO_REQUEST datagram (ping) of the ICMP protocol to get an ICMP ECHO_RESPONSE from a host or gateway. ECHO_REQUEST datagrams have an IP and an ICMP header, followed by a *struct timeval* data type and then an arbitrary number of pad bytes that are used to fill the packet.

The host is specified either as host name (if DNS is being used on the network) or as an IPv4 or IPv6 address. If a host name is specified and neither the **ipv4** nor **ipv6** keyword is used, the IPv4 or IPv6 address associated with the host name is pinged, depending on which address is resolved first.

When using the ping command for fault isolation, enter the command on the local host to verify that the local network interface is up and running. Then, ping hosts and gateways farther away. Round-trip times and packet-loss statistics are computed.

If duplicate packets are received, they are not included in the packet-loss calculation, although the round-trip time of these packets is used in calculating the minimum, average, and maximum round-trip times.

Note: The minimum interpacket interval is 200 ms for all users, except for a super-user.

When the ping command is interrupted by typing <Ctrl>+c , a brief statistical summary is displayed.

This example shows how to test whether the <u>www.google.com</u> network is reachable with an interpacket interval. The example also displays the time stamp in the ping output.

vyatta@vyatta:~\$ ping www.google.com adaptive timestamp audible PING www.google.com (216.58.216.164) 56(84) bytes of data. [1428886179.416698] 64 bytes from sea15s02-in-f4.1e100.net (216.58.216.164): icmp reg=2 ttl=54 time=20.0 ms [1428886179.457896] 64 bytes from sea15s02-in-f4.1e100.net (216.58.216.164): icmp_req=4 ttl=54 time=20.0 ms [1428886179.499170] 64 bytes from sea15s02-in-f4.1e100.net (216.58.216.164): icmp req=6 ttl=54 time=20.2 ms [1428886179.539836] 64 bytes from sea15s02-in-f4.1e100.net (216.58.216.164): icmp_req=8 ttl=54 time=19.9 ms [1428886179.580788] 64 bytes from sea15s02-in-f4.1e100.net (216.58.216.164): icmp_req=10 ttl=54 time=19.9 ms [1428886179.621507] 64 bytes from sea15s02-in-f4.1e100.net (216.58.216.164): icmp_req=12 ttl=54 time=20.0 ms [1428886179.662363] 64 bytes from sea15s02-in-f4.1e100.net (216.58.216.164): icmp_req=14 ttl=54 time=19.8 ms [1428886179.703528] 64 bytes from sea15s02-in-f4.1e100.net (216.58.216.164): icmp_req=16 ttl=54 time=20.1 ms [1428886179.744554] 64 bytes from sea15s02-in-f4.1e100.net (216.58.216.164): icmp_req=18 ttl=54 time=20.0 ms

```
[1428886179.785702] 64 bytes from sea15s02-in-f4.1e100.net
 (216.58.216.164): icmp_req=20 ttl=54 time=20.1 ms
[1428886179.826861] 64 bytes from sea15s02-in-f4.1e100.net
 (216.58.216.164): icmp_req=22 ttl=54 time=20.2 ms
[1428886181.384621] From 10.18.170.201 icmp_seq=1 Destination Host
Unreachable
[1428886181.385770] From 10.18.170.201 icmp_seq=3 Destination Host
Unreachable
[1428886181.386512] From 10.18.170.201 icmp_seq=5 Destination Host
Unreachable
[1428886181.387046] From 10.18.170.201 icmp_seq=7 Destination Host
Unreachable
[1428886181.387599] From 10.18.170.201 icmp_seq=9 Destination Host
Unreachable
[1428886181.388177] From 10.18.170.201 icmp_seq=11 Destination Host
Unreachable
[1428886181.388707] From 10.18.170.201 icmp_seq=13 Destination Host
Unreachable
[1428886181.389269] From 10.18.170.201 icmp_seq=15 Destination Host
Unreachable
[1428886181.389865] From 10.18.170.201 icmp_seq=17 Destination Host
Unreachable
[1428886181.390681] From 10.18.170.201 icmp_seq=19 Destination Host
Unreachable
[1428886181.391494] From 10.18.170.201 icmp_seq=21 Destination Host
Unreachable
[216.164): icmp_req=165 ttl=54 time=20.4 ms
```

ping allow-broadcast

Allows the pinging of a broadcast address.

```
ping { ipv4_address | ipv6_address | hostname } allow-broadcast option
```

ipv4_address

The IPv4 address of the host.

ipv6_address

The IPv6 address of the host.

hostname

A host being pinged. This keyword is used when the host is specified as a host name rather than as an IP address.

allow-broadcast

Allows pinging a broadcast address.

option

Each of the following entries are considered options. These options can be issued consecutively, that is, in the same command line.

adaptive

Adaptively sets interpacket interval.

allow-broadcast

Allows you to ping broadcast address.

audible

Makes a beep sound on every ping, while the router pings for host details.

bypass-route

Bypasses normal routing tables during ping.

count

Specifies the number of ping requests to send.

deadline

Specifies the number of seconds before which ping expires.

ether-size

Matches the overall size of the data packet with the resultant size of the Layer 3 packet.

flood

Sends 100 ping requests each second.

interface

Specifies the interface that the device must use as source address.

interval

Specifies the time in seconds for which the device must wait between ping requests.

mark

Specifies that the device must consider the request for special processing.

mtu-discovery

Specifies the path MTU discovery strategy.

no-loopback

Suppresses loop-back of multicast pings.

numeric

Does not resolve domain name system (DNS) names during ping.

pattern

Specifies the hexadecimal digit pattern to fill the packet.

quiet

Prints only the ping summary page.

record-route

Records the route that the packet takes.

size

Specifies the number of bytes to send for a ping request.

timestamp

Displays the timestamp during ping output.

tos

Marks packet with specified type of service (TOS).

ttl

Specifies the maximum packet life-time for a host.

verbose

Displays a detailed output for the ping command.

Operational mode.

The ping command tests whether a network host is reachable.

The ping command uses the ECHO_REQUEST datagram (ping) of the ICMP protocol to get an ICMP ECHO_RESPONSE from a host or gateway. ECHO_REQUEST datagrams have an IP and an ICMP header, followed by a *struct timeval* data type and then an arbitrary number of pad bytes that are used to fill the packet.

The host is specified either as host name (if DNS is being used on the network) or as an IPv4 or IPv6 address. If a host name is specified and neither the **ipv4** nor **ipv6** keyword is used, the IPv4 or IPv6 address associated with the host name is pinged, depending on which address is resolved first.

When using the ping command for fault isolation, enter the command on the local host to verify that the local network interface is up and running. Then, ping hosts and gateways farther away. Round-trip times and packet-loss statistics are computed.

If duplicate packets are received, they are not included in the packet-loss calculation, although the round-trip time of these packets is used in calculating the minimum, average, and maximum round-trip times.

When the ping command is interrupted by typing <Ctrl>+cs, a brief statistical summary is displayed.

This example shows how to test whether <u>www.google.com</u> network is reachable. It also shows how to allow the pinging of the broadcast address and define a life-time of 30 hops for each host.

64 bytes from seal5s02-in-f4.le100.net (216.58.216.164): icmp_req=6 ttl=54 time=20.3 ms From 10.18.170.201 icmp_seq=5 Destination Host Unreachable From 10.18.170.201 icmp_seq=7 Destination Host Unreachable 64 bytes from seal5s02-in-f4.le100.net (216.58.216.164): icmp_req=8 ttl=54 time=19.9 ms 64 bytes from seal5s02-in-f4.le100.net (216.58.216.164): icmp_req=10 ttl=54 time=20.4 ms From 10.18.170.201 icmp_seq=9 Destination Host Unreachable From 10.18.170.201 icmp_seq=11 Destination Host Unreachable 64 bytes from seal5s02-in-f4.le100.net (216.58.216.164): icmp_req=12 ttl=54 time=20.0 ms

ping audible

Makes a beep sound when the router pings for the host details.

```
ping { ipv4_address | ipv6_address | hostname } audible option
```

ipv4_address

The IPv4 address of the host.

ipv6_address

The IPv6 address of the host.

hostname

A host being pinged. This keyword is used when the host is specified as a host name rather than as an IP address.

audible

Makes a beep sound while the device pings for the host details.

option

Each of the following entries are considered options. These options can be issued consecutively, that is, in the same command line.

adaptive

Adaptively sets interpacket interval.

allow-broadcast

Allows you to ping broadcast address.

audible

Makes a beep sound on every ping, while the router pings for host details.

bypass-route

Bypasses normal routing tables during ping.

count

Specifies the number of ping requests to send.

deadline

Specifies the number of seconds before which ping expires.

ether-size

Matches the overall size of the data packet with the resultant size of the Layer 3 packet.

flood

Sends 100 ping requests each second.

interface

Specifies the interface that the device must use as source address.

interval

Specifies the time in seconds for which the device must wait between ping requests.

mark

Specifies that the device must consider the request for special processing.

mtu-discovery

Specifies the path MTU discovery strategy.

no-loopback

Suppresses loop-back of multicast pings.

numeric

Does not resolve domain name system (DNS) names during ping.

pattern

Specifies the hexadecimal digit pattern to fill the packet.

quiet

Prints only the ping summary page.

record-route

Records the route that the packet takes.

size

Specifies the number of bytes to send for a ping request.

timestamp

Displays the timestamp during ping output.

tos

Marks packet with specified type of service (TOS).

ttl

Specifies the maximum packet life-time for a host.

verbose

Displays a detailed output for the ping command.

Operational mode

The ping command tests whether a network host is reachable.

The ping command uses the ECHO_REQUEST datagram (ping) of the ICMP protocol to get an ICMP ECHO_RESPONSE from a host or gateway. ECHO_REQUEST datagrams have an IP and an ICMP header, followed by a *struct timeval* data type and then an arbitrary number of pad bytes that are used to fill the packet.

The host is specified either as host name (if DNS is being used on the network) or as an IPv4 or IPv6 address. If a host name is specified and neither the **ipv4** nor **ipv6** keyword is used, the IPv4 or IPv6 address associated with the host name is pinged, depending on which address is resolved first.

When using the ping command for fault isolation, enter the command on the local host to verify that the local network interface is up and running. Then, ping hosts and gateways farther away. Round-trip times and packet-loss statistics are computed.

If duplicate packets are received, they are not included in the packet-loss calculation, although the round-trip time of these packets is used in calculating the minimum, average, and maximum round-trip times.

When the ping command is interrupted by typing <Ctrl>+C, a brief statistical summary is displayed.

This example shows how to configure the router to send an ICMP_ECHO request five times, making a beep sound on every ping.

```
vyatta@vyatta:~$ ping www.google.com audible count 5
PING www.google.com (216.58.216.164) 56(84) bytes of data.
64 bytes from seal5s02-in-f4.le100.net (216.58.216.164): icmp_req=2 ttl=54
time=20.0 ms
From 10.18.170.201 icmp_seq=1 Destination Host Unreachable
From 10.18.170.201 icmp_seq=3 Destination Host Unreachable
64 bytes from seal5s02-in-f4.le100.net (216.58.216.164): icmp_req=4 ttl=54
time=20.1 ms
--- www.google.com ping statistics ---
5 packets transmitted, 2 received, +2 errors, 60% packet loss, time 4010ms
rtt min/avg/max/mdev = 20.048/20.075/20.103/0.144 ms, pipe 3
vyatta@vyatta:~$
```

ping bypass-route

Bypasses the normal routing tables and sends a ping request directly to a host on an attached interface.

```
ping { ipv4_address | ipv6_address | hostname } bypass-route option
```

ipv4_address

The IPv4 address of the host.

ipv6_address

The IPv6 address of the host.

hostname

A host being pinged. This keyword is used when the host is specified as a host name rather than as an IP address.

bypass-route

Bypasses the normal routing tables and sends directly to a host on an attached interface. If the host is not directly attached to a network, an error is returned.

option

Each of the following entries are considered options. These options can be issued consecutively, that is, in the same command line.

adaptive

Adaptively sets interpacket interval.

allow-broadcast

Allows you to ping broadcast address.

audible

Makes a beep sound on every ping, while the router pings for host details.

bypass-route

Bypasses normal routing tables during ping.

count

Specifies the number of ping requests to send.

deadline

Specifies the number of seconds before which ping expires.

ether-size

Matches the overall size of the data packet with the resultant size of the Layer 3 packet.

flood

Sends 100 ping requests each second.

interface

Specifies an interface that the device must use as the source address.

interval

Specifies the time in seconds for which the device must wait between ping requests.

mark

Specifies that the device must consider the ping request for special processing.

mtu-discovery

Specifies the path MTU discovery strategy.

no-loopback

Suppresses loop-back of multicast pings.

numeric

Does not resolve domain name system (DNS) names during ping.

pattern

Specifies the hexadecimal digit pattern to fill the packet.

quiet

Prints only the ping summary page.

record-route

Records the route that the packet takes.

size

Specifies the number of bytes to send for a ping request.

timestamp

Displays the timestamp during ping output.

tos

Marks packet with specified type of service (TOS).

ttl

Specifies the maximum packet life-time for a host.

verbose

Displays a detailed output for the ping command.

Operational mode

The ping command tests whether a network host is reachable.

The ping command uses the ECHO_REQUEST datagram (ping) of the ICMP protocol to get an ICMP ECHO_RESPONSE from a host or gateway. ECHO_REQUEST datagrams have an IP and an ICMP header, followed by a *struct timeval* data type and then an arbitrary number of pad bytes that are used to fill the packet.

If the host is not directly attached to a network, an error is returned.

When the ping command is interrupted by typing <Ctrl>+c, a brief statistical summary is displayed.

This example shows how to bypass the normal routing tables and send a ping request directly to a host on an attached interface.

```
vyatta@vyatta:~$ ping www.google.com bypass-route
PING www.google.com (216.58.216.164) 56(84) bytes of data.
ping: sendmsg: Network is unreachable
```

ping count

Specifies a number of ping requests that the router must send.

ping { ipv4_address | ipv6_address | hostname } count requests option

ipv4_address

The IPv4 address of the host.

ipv6_address

The IPv6 address of the host.

hostname

A host being pinged. This keyword is used when the host is specified as a host name rather than as an IP address.

requests

The number of ping requests to send.

option

Each of the following entries are considered options. These options can be issued consecutively, that is, in the same command line.

adaptive

Adaptively sets interpacket interval.

allow-broadcast

Allows you to ping broadcast address.

audible

Makes a beep sound, while the router pings for host details.

bypass-route

Bypasses normal routing tables during ping.

count

Specifies the number of ping requests to send.

deadline

Specifies the number of seconds before which ping expires.

ether-size

Matches the overall size of the data packet with the resultant size of the Layer 3 packet.

flood

Sends 100 ping requests each second.

interface

Specifies an interface that the device must use as the source address.

interval

Specifies the time in seconds for which the device must wait between ping requests.

mark

Specifies that the device must consider the ping request for special processing.

mtu-discovery

Specifies the path MTU discovery strategy.

no-loopback

Supress loop-back of multicast pings.

numeric

Does not resolve domain name system (DNS) names during ping.

pattern

Specifies the hexadecimal digit pattern to fill the packet.

quiet

Prints only the ping summary page.

record-route

Records the route that the packet takes.

size

Specifies the number of bytes to send for a ping request.

timestamp

Displays the timestamp during ping output.

tos

Marks packet with specified type of service (TOS).

ttl

Specifies the maximum packet life-time for a host.

verbose

Displays a detailed output for the ping command.

Operational mode.

The ping command tests whether a network host is reachable.

The ping command uses the ECHO_REQUEST datagram (ping) of the ICMP protocol to get an ICMP ECHO_RESPONSE from a host or gateway. ECHO_REQUEST datagrams have an IP and an ICMP header, followed by a *struct timeval* data type and then an arbitrary number of pad bytes that are used to fill the packet.

When the ping command is interrupted by typing <Ctrl>+c, a brief statistical summary is displayed.

This example shows how to test whether <u>www.google.com</u> network is reachable by sending five ICMP ECHO requests and that the router waits for five reply packets for ten seconds.

vyatta@vyatta:~\$ ping www.google.com count 5 deadline 10
PING www.google.com (216.58.216.164) 56(84) bytes of data.

```
64 bytes from seal5s02-in-f4.lel00.net (216.58.216.164): icmp_req=2 ttl=54
time=20.0 ms
From 10.18.170.201 icmp_seq=1 Destination Host Unreachable
From 10.18.170.201 icmp_seq=3 Destination Host Unreachable
64 bytes from seal5s02-in-f4.lel00.net (216.58.216.164): icmp_req=4 ttl=54
time=20.1 ms
--- www.google.com ping statistics ---
5 packets transmitted, 2 received, +2 errors, 60% packet loss, time 4010ms
rtt min/avg/max/mdev = 20.048/20.075/20.103/0.144 ms, pipe 3
```

```
vyatta@vyatta:~$ ping www.google.com count 5
```

ping deadline

Specifies the number of seconds before which the ping expires.

```
ping { ipv4_address | ipv6_address | hostname } deadline seconds option
```

ipv4_address

The IPv4 address of the host.

ipv6_address

The IPv6 address of the host.

hostname

A host being pinged. This keyword is used when the host is specified as a host name rather than as an IP address.

seconds

The number of seconds before which ping exits.

option

Each of the following entries are considered options. These options can be issued consecutively, that is, in the same command line.

adaptive

Adaptively sets interpacket interval.

allow-broadcast

Allows you to ping broadcast address.

audible

Makes a beep sound on every ping, while the router pings for host details.

bypass-route

Bypasses normal routing tables during ping.

count

Specifies the number of ping requests to send.

deadline

Specifies the number of seconds before which ping expires.

ether-size

Matches the overall size of the data packet with the resultant size of the Layer 3 packet.

flood

Sends 100 ping requests each second.

interface

Specifies an interface that the device must use as the source address.

interval

Specifies the time in seconds for which the device must wait between ping requests.

mark

Specifies that the device must consider the request for special processing.

mtu-discovery

Specifies the path MTU discovery strategy.

no-loopback

Suppresses loop-back of multicast pings.

numeric

Does not resolve domain name system (DNS) names during ping.

pattern

Specifies the hexadecimal digit pattern to fill the packet.

quiet

Prints only the ping summary page.

record-route

Records the route that the packet takes.

size

Specifies the number of bytes to send for a ping request.

timestamp

Displays the timestamp during ping output.

tos

Marks packet with specified type of service (TOS).

ttl

Specifies the maximum packet life-time for a host.

verbose

Displays a detailed output for the ping command.

Operational mode

The ping command tests whether a network host is reachable.

The ping command uses the ECHO_REQUEST datagram (ping) of the ICMP protocol to get an ICMP ECHO_RESPONSE from a host or gateway. ECHO_REQUEST datagrams have an IP and an ICMP header, followed by a *struct timeval* data type and then an arbitrary number of pad bytes that are used to fill the packet.

When the ping command is interrupted by typing <Ctrl>+c , a brief statistical summary is displayed.

This example shows how to test whether <u>www.google.com</u> network is reachable within three seconds.

```
vyatta@vyatta:~$ ping www.google.com deadline 3
PING www.google.com (216.58.216.164) 56(84) bytes of data.
64 bytes from seal5s02-in-f4.lel00.net (216.58.216.164): icmp_req=1 ttl=54
time=19.8 ms
64 bytes from seal5s02-in-f4.lel00.net (216.58.216.164): icmp_req=3 ttl=54
time=20.1 ms
--- www.google.com ping statistics ---
3 packets transmitted, 2 received, 33% packet loss, time 2004ms
rtt min/avg/max/mdev = 19.873/19.995/20.118/0.187 ms
```

ping ether-size

Matches the overall size of the data packet with the resultant size of the Layer 3 packet.

```
ping { ipv4_address | ipv6_address | hostname } ether-size bytes option
```

ipv4_address

The IPv4 address of the host.

ipv6_address

The IPv6 address of the host.

hostname

A host being pinged. This keyword is used when the host is specified as a host name rather than as an IP address.

bytes

The number of bytes.

Each of the following entries are considered options. These options can be issued consecutively, that is, in the same command line.

adaptive

Adaptively sets interpacket interval.

allow-broadcast

Allows you to ping broadcast address.

audible

Makes a beep sound during every ping, while the router pings for host details.

bypass-route

Bypasses normal routing tables during ping.

count

Specifies the number of ping requests to send.

deadline

Specifies the number of seconds before which ping expires.

ether-size

Matches the overall size of the data packet with the resultant size of the Layer 3 packet.

flood

Sends 100 ping requests each second.

interface

Specifies the interface that the device must use as source address.

interval

Specifies the time in seconds for which the device must wait between ping requests.

mark

Specifies that the device must consider the ping request for special processing.

mtu-discovery

Specifies the path MTU discovery strategy.

no-loopback

Suppresses loop-back of multicast pings.

numeric

Does not resolve domain name system (DNS) names during ping.

pattern

Specifies the hexadecimal digit pattern to fill the packet.

quiet

Prints only the ping summary page.

record-route

Records the route that the packet takes.

size

Specifies the number of bytes to send for a ping request.

timestamp

Displays the timestamp during ping output.

tos

Marks packet with specified type of service (TOS).

ttl

Specifies the maximum packet life-time for a host.

verbose

Displays a detailed output for the ping command.

Operational mode

The ping command tests whether a network host is reachable.

The ping command when used with the ether-size option specifies the size of the resultant Layer 3 packet, such as ICMP data plus ICMP headers, IP headers, and so on.

The ping *host* ether-size command ensures that the resultant size supports Layer 3 IP packet size. The Ethernet MTU is 1,500 bytes. Therefore, the ping *host* ether-size command subtracts 28 bytes from the host size of the Layer 3 packet to ensure that the resultant value matches the overall size of the data packet. The ping *host* ether-size command avoids the fragmentation overhead due to the MTU.

Note: You can use either the ping *host* size or ping *host* ether-size command to ping a host network. You cannot use both commands simultaneously.

ping flood

Sends 100 ping requests each second.

```
ping { ipv4_address | ipv6_address | hostname } flood option
```

ipv4_address

The IPv4 address of the host.

ipv6_address

The IPv6 address of the host.

hostname

A host being pinged. This keyword is used when the host is specified as a host name rather than as an IP address.

option

Each of the following entries are considered options. These options can be issued consecutively, that is, in the same command line.

adaptive

Adaptively sets interpacket interval.

allow-broadcast

Allows you to ping broadcast address.

audible

Makes noise while the device pings for the host details.

bypass-route

Bypasses normal routing tables during ping.

count

Specifies the number of ping requests to send.

deadline

Specifies the number of seconds before which ping expires.

ether-size

Matches the overall size of the data packet with the resultant size of the Layer 3 packet.

flood

Sends 100 ping requests each second.

interface

Specifies the interface that the device must use as source address.

interval

Specifies the time in seconds for which the device must wait between ping requests.

mark

Specifies that the device must consider the ping request for special processing.

mtu-discovery

Specifies the path MTU discovery strategy.

no-loopback

Suppresses loop-back of multicast pings.

numeric

Does not resolve domain name system (DNS) names during ping.

pattern

Specifies the hexadecimal digit pattern to fill the packet.

quiet

Prints only the ping summary page.

record-route

Records the route that the packet takes.

size

Specifies the number of bytes to send for a ping request.

timestamp

Displays the timestamp during ping output.

tos

Marks packet with specified type of service (TOS).

ttl

Specifies the maximum packet life-time for a host.

verbose

Displays a detailed output for the ping command.

Operational mode

The ping command tests whether a network host is reachable.

The ping command uses the ECHO_REQUEST datagram (ping) of the ICMP protocol to get an ICMP ECHO_RESPONSE from a host or gateway. ECHO_REQUEST datagrams have an IP and an ICMP header, followed by a *struct timeval* data type and then an arbitrary number of pad bytes that are used to fill the packet.

When the ping command is interrupted by typing <Ctrl>+c, a brief statistical summary is displayed.

This example shows how to test whether www.google.com network is reachable by sending a maximum of 100 ping requests each second.

ping interface

Specifies an interface that the device must use as the source address.

```
ping { ipv4_addres | ipv6_address | hostname } interface { ipv4_addres |
ipv6_address | hostname } option
```

ipv4_address

The IPv4 address of the host.

ipv6_address

The IPv6 address of the host.

hostname

A host being pinged. This keyword is used when the host is specified as a host name rather than as an IP address.

option

Each of the following entries are considered options. These options can be issued consecutively, that is, in the same command line.

adaptive

Adaptively sets interpacket interval.

allow-broadcast

Allows you to ping broadcast address.

audible

Makes a beep sound on every ping, while the device pings for host details.

bypass-route

Bypasses normal routing tables during ping.

count

Specifies the number of ping requests to send.

deadline

Specifies the number of seconds before which ping expires.

ether-size

Matches the overall size of the data packet with the resultant size of the Layer 3 packet.

flood

Sends 100 ping requests each second.

interface

Specifies an interface that the device must use as the source address.

interval

Specifies the time in seconds for which the device must wait between ping requests.

mark

Specifies that the device must consider the ping request for special processing.

mtu-discovery

Specifies the path MTU discovery strategy.

no-loopback

Suppresses loop-back of multicast pings.

numeric

Does not resolve domain name system (DNS) names during ping.

pattern

Specifies the hexadecimal digit pattern to fill the packet.

quiet

Prints only the ping summary page.

record-route

Records the route that the packet takes.

size

Specifies the number of bytes to send for a ping request.

timestamp

Displays the timestamp during ping output.

tos

Marks packet with specified type of service (TOS).

ttl

Specifies the maximum packet life-time for a host.

verbose

Displays a detailed output for the ping command.

Operational mode

The ping command tests whether a network host is reachable.

The ping command uses the ECHO_REQUEST datagram (ping) of the ICMP protocol to get an ICMP ECHO_RESPONSE from a host or gateway. ECHO_REQUEST datagrams have an IP and an ICMP header, followed by a *struct timeval* data type and then an arbitrary number of pad bytes that are used to fill the packet.

Use the ping *host* interface command when pinging IPv6 link-local address.

When the ping command is interrupted by typing <Ctrl>+c, a brief statistical summary is displayed.

This example shows how to test whether an IPv4 interface is reachable.

```
vyatta@vyatta:~$ ping 192.1.2.2 interface dp0s6
PING 192.1.2.2 (192.1.2.2) from 192.1.2.1 dp0s6: 56(84) bytes of data.
64 bytes from 192.1.2.2: icmp_req=1 tt1=64 time=1.66 ms
^C
--- 192.1.2.2 ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 1.664/1.664/1.664/0.000 ms
```

This example shows how to test whether an IPv4 address is reachable using the specified interface address.

```
vyatta@vyatta:~$ ping 192.1.2.2 interface 192.1.2.1
PING 192.1.2.2 (192.1.2.2) from 192.1.2.1 : 56(84) bytes of data.
64 bytes from 192.1.2.2: icmp_req=1 ttl=64 time=1.02 ms
^C
```

This example shows how to test whether an IPv6 interface is reachable.

```
vyatta@vyatta:~$ ping 2012:dead::2 interface 2012:dead::1
PING 2012:dead::2(2012:dead::2) from 2012:dead::1 : 56 data bytes
64 bytes from 2012:dead::2: icmp_seq=1 ttl=64 time=3.04 ms
64 bytes from 2012:dead::2: icmp_seq=2 ttl=64 time=1.01 ms
^C
--- 2012:dead::2 ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, time 1001ms
rtt min/avg/max/mdev = 1.012/2.027/3.043/1.016 ms
```

ping interval

Specifies the time in seconds for which the device must wait between ping requests.

ping { ipv4_address | ipv6_address | hostname } interval seconds option

ipv4_address

The IPv4 address of the host.

ipv6_address

The IPv6 address of the host.

hostname

A host being pinged. This keyword is used when the host is specified as a host name rather than as an IP address.

seconds

The number of seconds for which the device must wait between ping requests.

option

Each of the following entries are considered options. These options can be issued consecutively, that is, in the same command line.

adaptive

Adaptively sets interpacket interval.

allow-broadcast

Allows you to ping broadcast address.

audible

Makes a beep sound on every ping, while the device pings for host details.

bypass-route

Bypasses normal routing tables during ping.

count

Specifies the number of ping requests to send.

deadline

Specifies the number of seconds before which ping expires.

ether-size

Matches the overall size of the data packet with the resultant size of the Layer 3 packet.

flood

Sends 100 ping requests each second.

interface

Specifies an interface that the device must use as the source address.

interval

Specifies the time in seconds for which the device must wait between ping requests.

mark

Specifies that the device must consider the ping request for special processing.

mtu-discovery

Specifies the path MTU discovery strategy.

no-loopback

Suppresses loop-back of multicast pings.

numeric

Does not resolve domain name system (DNS) names during ping.

pattern

Specifies the hexadecimal digit pattern to fill the packet.

quiet

Prints only the ping summary page.

record-route

Records the route that the packet takes.

size

Specifies the number of bytes to send for a ping request.

timestamp

Displays the timestamp during ping output.

tos

Marks packet with specified type of service (TOS).

ttl

Specifies the maximum packet life-time for a host.

verbose

Displays a detailed output for the ping command.

Operational mode

The ping command tests whether a network host is reachable.

The ping command uses the ECHO_REQUEST datagram (ping) of the ICMP protocol to get an ICMP ECHO_RESPONSE from a host or gateway. ECHO_REQUEST datagrams have an IP and an ICMP header, followed by a *struct timeval* data type and then an arbitrary number of pad bytes that are used to fill the packet.

When the ping command is interrupted by typing <Ctrl>+c, a brief statistical summary is displayed.

This example shows how to test whether <u>www.google.com</u> network is reachable by providing 3 seconds of time between 5 ping attempts.

vyatta@vyatta:~\$ ping www.google.com interval 3 count 15

```
PING www.google.com (216.58.216.164) 56(84) bytes of data.
64 bytes from sea15s02-in-f4.1e100.net (216.58.216.164): icmp_req=1 ttl=54
time=20.2 ms
From 10.18.170.201 icmp_seq=2 Destination Host Unreachable
From 10.18.170.201 icmp_seq=3 Destination Host Unreachable
From 10.18.170.201 icmp_seq=4 Destination Host Unreachable
From 10.18.170.201 icmp_seq=5 Destination Host Unreachable
From 10.18.170.201 icmp_seq=6 Destination Host Unreachable
From 10.18.170.201 icmp_seq=7 Destination Host Unreachable
From 10.18.170.201 icmp_seq=8 Destination Host Unreachable
From 10.18.170.201 icmp_seq=9 Destination Host Unreachable
From 10.18.170.201 icmp_seq=10 Destination Host Unreachable
From 10.18.170.201 icmp_seq=11 Destination Host Unreachable
From 10.18.170.201 icmp_seq=12 Destination Host Unreachable
From 10.18.170.201 icmp_seq=13 Destination Host Unreachable
From 10.18.170.201 icmp_seq=14 Destination Host Unreachable
From 10.18.170.201 icmp_seq=15 Destination Host Unreachable
--- www.google.com ping statistics ---
15 packets transmitted, 1 received, +14 errors, 93% packet loss, time
41999ms
rtt min/avg/max/mdev = 20.264/20.264/20.264/0.000 ms
```

ping mark

Specifies that the device must consider the ping request for special processing.

```
ping { ipv4_address | ipv6_address | hostname } mark fwmark option
```

ipv4_address

The IPv4 address of the host.

ipv6_address

The IPv6 address of the host.

hostname

A host being pinged. This keyword is used when the host is specified as a host name rather than as an IP address.

fwmark

Marks the outgoing packet.

option

Each of the following entries are considered options. These options can be issued consecutively, that is, in the same command line.

adaptive

Adaptively sets interpacket interval.

allow-broadcast

Allows you to ping broadcast address.

audible

Makes a beep sound on every ping, while the device pings for host details.

bypass-route

Bypasses normal routing tables during ping.

count

Specifies the number of ping requests to send.

deadline

Specifies the number of seconds before which ping expires.

ether-size

Matches the overall size of the data packet with the resultant size of the Layer 3 packet.

flood

Sends 100 ping requests each second.

interface

Specifies an interface that the device must use as the source address.

interval

Specifies the time in seconds for which the device must wait between ping requests.

mark

Specifies that the device must consider the request for special processing.

mtu-discovery

Specifies the path MTU discovery strategy.

no-loopback

Suppresses loop-back of multicast pings.

numeric

Does not resolve domain name system (DNS) names during ping.

pattern

Specifies the hexadecimal digit pattern to fill the packet.

quiet

Prints only the ping summary page.

record-route

Records the route that the packet takes.

size

Specifies the number of bytes to send for a ping request.

timestamp

Displays the timestamp during ping output.

tos

Marks packet with specified type of service (TOS).

ttl

Specifies the maximum packet life-time for a host.

verbose

Displays a detailed output for the ping command.

Operational mode

The ping command tests whether a network host is reachable.

The ping command uses the ECHO_REQUEST datagram (ping) of the ICMP protocol to get an ICMP ECHO_RESPONSE from a host or gateway. ECHO_REQUEST datagrams have an IP and an ICMP header, followed by a *struct timeval* data type and then an arbitrary number of pad bytes that are used to fill the packet.

The ping *host* mark *fwmark* command is used in usecases within the operating system. For example, to tag the outgoing packets while configuring policy routing, to select specific outbound processing.

When the ping command is interrupted by typing <Ctrl>+c, a brief statistical summary is displayed.

ping mtu-discovery

Selects the discovery strategy of the path maximum transmission unit (PMTU).

```
ping { ipv4_address | ipv6_address | hostname } mtu-discovery { do | dont |
want } option
```

ipv4_address

The IPv4 address of the host.

ipv6_address

The IPv6 address of the host.

hostname

A host being pinged. This keyword is used when the host is specified as a host name rather than as an IP address.

do

Prohibits fragmentation, even for the local packet. Sets a do-not fragment (DF) flag to the router.

want

Performs a PMTU discovery. During the discovery the device fragments the packet locally.

dont

Prohibits fragmentation, but does not set a DF flag.

option

Each of the following entries are considered options. These options can be issued consecutively, that is, in the same command line.

adaptive

Adaptively sets interpacket interval.

allow-broadcast

Allows you to ping broadcast address.

audible

Makes a beep sound on every ping, while the device pings for host details.

bypass-route

Bypasses normal routing tables during ping.

count

Specifies the number of ping requests to send.

deadline

Specifies the number of seconds before which ping expires.

ether-size

Matches the overall size of the data packet with the resultant size of the Layer 3 packet.

flood

Sends 100 ping requests each second.

interface

Specifies an interface that the device must use as the source address.

interval

Specifies the time in seconds for which the device must wait between ping requests.

mark

Specifies that the device must consider the ping request for special processing.

mtu-discovery

Specifies the path MTU discovery strategy.

no-loopback

Suppresses loop-back of multicast pings.

numeric

Does not resolve domain name system (DNS) names during ping.

pattern

Specifies the hexadecimal digit pattern to fill the packet.

quiet

Prints only the ping summary page.

record-route

Records the route that the packet takes.

size

Specifies the number of bytes to send for a ping request.

timestamp

Displays the timestamp during ping output.

tos

Marks packet with specified type of service (TOS).

ttl

Specifies the maximum packet life-time for a host.

verbose

Displays a detailed output for the ping command.

Operational mode

The ping *host* mtu-discovery command selects the discovery strategy of the PMTU, based on the parameters provided. The command checks the size of the packet. If the size is equal to or greater than the maximum data payload that is available in a packet, the device determines whether the packet has to be fragmented, based on the discovery strategy of the PMTU.

This example shows how to test 1472 bytes of data of the host 10.0.0.103 for network reachability while prohibiting network fragmentation during the ping. However a do-not-fragment flag is set for the router.

```
vyatta@vyatta:~$ ping 10.0.0.103 size 1472 mtu-discovery do
PING 10.0.0.103 (10.0.0.103) 1472(1500) bytes of data.
1480 bytes from 10.0.0.103: icmp_req=1 ttl=64 time=0.923 ms
^[[A1480 bytes from 10.0.0.103: icmp_req=2 ttl=64 time=1.35 ms
^C
--- 10.0.0.103 ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, time 999ms
rtt min/avg/max/mdev = 0.923/1.137/1.352/0.217 ms
```

This example shows how to test 1472 bytes of data of the host 10.0.0.103 for network reachability while prohibiting network fragmentation during the ping. However a do-not-fragment flag is not set for the router.

```
vyatta@VR-1:~$ ping 10.0.0.103 size 1472 mtu-discovery dont
PING 10.0.0.103 (10.0.0.103) 1472(1500) bytes of data.
1480 bytes from 10.0.0.103: icmp_req=1 ttl=64 time=1.25 ms
^C
--- 10.0.0.103 ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 1.250/1.250/1.250/0.000 ms
```

This example shows how to perform a discovery strategy for PMTU during a ping request. During the discovery, the router fragments the packet locally.

vyatta@VR-1:~\$ ping 10.0.0.103 size 1472 mtu-discovery want PING 10.0.0.103 (10.0.0.103) 1472(1500) bytes of data. 1480 bytes from 10.0.0.103: icmp_req=1 ttl=64 time=1.00 ms

```
^C
--- 10.0.0.103 ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 1.005/1.005/1.005/0.000 ms
```

ping no-loopback

Suppresses loopback of multicast pings.

```
ping { ipv4_address | ipv6_address | hostname} no-loopback option
```

ipv4_address

The IPv4 address of the host.

ipv6_address

The IPv6 address of the host.

hostname

A host being pinged. This keyword is used when the host is specified as a host name rather than as an IP address.

option

Each of the following entries are considered options. These options can be issued consecutively, that is, in the same command line.

adaptive

Adaptively sets interpacket interval.

allow-broadcast

Allows you to ping broadcast address.

audible

Makes noise while the device pings for the host details.

bypass-route

Bypasses normal routing tables during ping.

count

Specifies the number of ping requests to send.

deadline

Specifies the number of seconds before which ping expires.

ether-size

Matches the overall size of the data packet with the resultant size of the Layer 3 packet.

flood

Sends 100 ping requests each second.

interface

Specifies an interface that the device must use as the source address.

interval

Specifies the time in seconds for which the device must wait between ping requests.

mark

Specifies that the device must consider the ping request for special processing.

mtu-discovery

Specifies the path MTU discovery strategy.

no-loopback

Suppresses loop-back of multicast pings.

numeric

Does not resolve domain name system (DNS) names during ping.

pattern

Specifies the hexadecimal digit pattern to fill the packet.

quiet

Prints only the ping summary page.

record-route

Records the route that the packet takes.

size

Specifies the number of bytes to send for a ping request.

timestamp

Displays the timestamp during ping output.

tos

Marks packet with specified type of service (TOS).

tti

Specifies the maximum packet life-time for a host.

verbose

Displays a detailed output for the ping command.

Operational mode

The ping command tests whether a network host is reachable.

The ping command uses the ECHO_REQUEST datagram (ping) of the ICMP protocol to get an ICMP ECHO_RESPONSE from a host or gateway. ECHO_REQUEST datagrams have an IP and an ICMP header, followed by a *struct timeval* data type and then an arbitrary number of pad bytes that are used to fill the packet.

When the ping command is interrupted by typing <Ctrl>+c , a brief statistical summary is displayed.

ping numeric

Specifies that the router must not resolve domain name system (DNS) names during a ping.

ping { ipv4_address | ipv6_address | hostname } numeric option

ipv4_address

The IPv4 address of the host.

ipv6_address

The IPv6 address of the host.

hostname

A host being pinged. This keyword is used when the host is specified as a host name rather than as an IP address.

numeric

The number of ping requests to send.

option

Each of the following entries are considered options. These options can be issued consecutively, that is, in the same command line.

adaptive

Adaptively sets interpacket interval.

allow-broadcast

Allows you to ping broadcast address.

audible

Makes a beep sound on every ping, while the device pings for host details.

bypass-route

Bypasses normal routing tables during ping.

count

Specifies the number of ping requests to send.

deadline

Specifies the number of seconds before which ping expires.

ether-size

Matches the overall size of the data packet with the resultant size of the Layer 3 packet.

flood

Sends 100 ping requests each second.

interface

Specifies an interface that the device must use as the source address.

interval

Specifies the time in seconds for which the device must wait between ping requests.

mark

Specifies that the device must consider the ping request for special processing.

mtu-discovery

Specifies the path MTU discovery strategy.

no-loopback

Suppresses loop-back of multicast pings.

numeric

Does not resolve domain name system (DNS) names during ping.

pattern

Specifies the hexadecimal digit pattern to fill the packet.

quiet

Prints only the ping summary page.

record-route

Records the route that the packet takes.

size

Specifies the number of bytes to send for a ping request.

timestamp

Displays the timestamp during ping output.

tos

Marks packet with specified type of service (TOS).

ttl

Specifies the maximum packet life-time for a host.

verbose

Displays a detailed output for the ping command.

Operational mode

The ping command tests whether a network host is reachable.

The ping command uses the ECHO_REQUEST datagram (ping) of the ICMP protocol to get an ICMP ECHO_RESPONSE from a host or gateway. ECHO_REQUEST datagrams have an IP and an ICMP header, followed by a *struct timeval* data type and then an arbitrary number of pad bytes that are used to fill the packet.

When the ping command is interrupted by typing <Ctrl>+c, a brief statistical summary is displayed.

This example shows how to ensure that a ping command provides only numeric output, which means that the router does not look up symbolic names for host addresses.

vyatta@vyatta:~\$ ping www.google.com numeric. PING www.google.com (216.58.196.100) 56(84) bytes of data.

```
64 bytes from 216.58.196.100: icmp_req=1 ttl=54 time=42.1 ms
64 bytes from 216.58.196.100: icmp_req=2 ttl=54 time=44.3 ms
^C
--- www.google.com ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, time 1001ms
rtt min/avg/max/mdev = 42.177/43.278/44.379/1.101 ms
```

ping pattern

Specifies a hexadecimal digit pattern to fill the packet.

```
ping { ipv4_addres | ipv6_address | hostname } pattern hexadecimal-digit
option
```

ipv4_address

The IPv4 address of the host.

ipv6_address

The IPv6 address of the host.

hostname

A host being pinged. This keyword is used when the host is specified as a host name rather than as an IP address.

hexadecimal-digit

Hexadecimal digit to fill the packet.

option

Each of the following entries are considered options. These options can be issued consecutively, that is, in the same command line.

adaptive

Adaptively sets interpacket interval.

allow-broadcast

Allows you to ping broadcast address.

audible

Makes a beep sound on every ping, while the device pings for host details.

bypass-route

Bypasses normal routing tables during ping.

count

Specifies the number of ping requests to send.

deadline

Specifies the number of seconds before which ping expires.

ether-size

Matches the overall size of the data packet with the resultant size of the Layer 3 packet.

flood

Sends 100 ping requests each second.

interface

Specifies the interface that the device must use as source address.

interval

Specifies the time in seconds for which the device must wait between ping requests.

mark

Specifies that the device must consider the ping request for special processing.

mtu-discovery

Specifies the path MTU discovery strategy.

no-loopback

Suppresses loop-back of multicast pings.

numeric

Does not resolve domain name system (DNS) names during ping.

pattern

Specifies the hexadecimal digit pattern to fill the packet.

quiet

Prints only the ping summary page.

record-route

Records the route that the packet takes.

size

Specifies the number of bytes to send for a ping request.

timestamp

Displays the timestamp during ping output.

tos

Marks packet with specified type of service (TOS).

ttl

Specifies the maximum packet life-time for a host.

verbose

Displays a detailed output for the ping command.

Operational mode

The ping command tests whether a network host is reachable.

The ping command uses the ECHO_REQUEST datagram (ping) of the ICMP protocol to get an ICMP ECHO_RESPONSE from a host or gateway. ECHO_REQUEST datagrams have an IP and an ICMP header, followed by a *struct timeval* data type and then an arbitrary number of pad bytes that are used to fill the packet.

When the ping command is interrupted by typing <Ctrl>+c, a brief statistical summary is displayed.

This example shows how to send a packet that contains all 1's. This example helps to diagnose data-dependent problems in a network.

vyatta@vyatta:~\$ ping www.google.com pattern BCD
PATTERN: 0xbc0d
PING www.google.com (173.194.33.176) 56(84) bytes of data.
64 bytes from sea09s18-in-f16.1e100.net (173.194.33.176): icmp_req=1 ttl=54
 time=20.4 ms
64 bytes from sea09s18-in-f16.1e100.net (173.194.33.176): icmp_req=3 ttl=54
 time=20.3 ms
From 10.18.170.201 icmp_seq=2 Destination Host Unreachable
From 10.18.170.201 icmp_seq=4 Destination Host Unreachable
--- www.google.com ping statistics --205 packets transmitted, 103 received, +102 errors, 49% packet loss, time
204233ms
rtt min/avg/max/mdev = 20.095/20.417/20.861/0.235 ms, pipe 4
vyatta@vyatta:~\$ ^C
vyatta@vyatta:~\$

ping quiet

Prints only the ping summary page.

```
ping { ipv4_address | ipv6_address | hostname } quiet option
```

ipv4_address

The IPv4 address of the host.

ipv6_address

The IPv6 address of the host.

hostname

A host being pinged. This keyword is used when the host is specified as a host name rather than as an IP address.

option

Each of the following entries are considered options. These options can be issued consecutively, that is, in the same command line.

adaptive

Adaptively sets interpacket interval.

allow-broadcast

Allows you to ping broadcast address.

audible

Makes a beep sound on every ping, while the device pings for host details.

bypass-route

Bypasses normal routing tables during ping.

count

Specifies the number of ping requests to send.

deadline

Specifies the number of seconds before which ping expires.

ether-size

Matches the overall size of the data packet with the resultant size of the Layer 3 packet.

flood

Sends 100 ping requests each second.

interface

Specifies an interface that the device must use as the source address.

interval

Specifies the time in seconds for which the device must wait between ping requests.

mark

Specifies that the device must consider the request for special processing.

mtu-discovery

Specifies the path MTU discovery strategy.

no-loopback

Suppresses loop-back of multicast pings.

numeric

Does not resolve domain name system (DNS) names during ping.

pattern

Specifies the hexadecimal digit pattern to fill the packet.

quiet

Prints only the ping summary page.

record-route

Records the route that the packet takes.

size

Specifies the number of bytes to send for a ping request.

timestamp

Displays the timestamp during ping output.

tos

Marks packet with specified type of service (TOS).

tti

Specifies the maximum packet life-time for a host.

verbose

Displays a detailed output for the ping command.

Operational mode

The ping command tests whether a network host is reachable.

The ping command uses the ECHO_REQUEST datagram (ping) of the ICMP protocol to get an ICMP ECHO_RESPONSE from a host or gateway. ECHO_REQUEST datagrams have an IP and an ICMP header, followed by a *struct timeval* data type and then an arbitrary number of pad bytes that are used to fill the packet.

When the ping command is interrupted by typing <Ctrl>+c, a brief statistical summary is displayed.

This example shows how to print only the ping summary page for www.google.com.

```
vyatta@vyatta:~$ ping www.google.com quiet
--- www.google.com ping statistics ---
15 packets transmitted, 1 received, +14 errors, 93% packet loss, time
41999ms
rtt min/avg/max/mdev = 20.264/20.264/20.264/0.000 ms
```

ping record-route

Records the route that a packet takes.

```
ping { ipv4_address | ipv6_address | hostname } record-route option
```

ipv4_address

Pings the IPv4 address of the host.

ipv6_address

Pings the IPv6 address of the host.

hostname

A host being pinged. This keyword is used when the host is specified as a host name rather than as an IP address.

option

Each of the following entries are considered options. These options can be issued consecutively, that is, in the same command line.

adaptive

Adaptively sets interpacket interval.

allow-broadcast

Allows you to ping broadcast address.

audible

Makes a beep sound on every ping, while the device pings for the host details.

bypass-route

Bypasses normal routing tables during ping.

count

Specifies the number of ping requests to send.

deadline

Specifies the number of seconds before which ping expires.

ether-size

Matches the overall size of the data packet with the resultant size of the Layer 3 packet.

flood

Sends 100 ping requests each second.

interface

Specifies an interface that the device must use as the source address.

interval

Specifies the time in seconds for which the device must wait between ping requests.

mark

Specifies that the device must consider the request for special processing.

mtu-discovery

Specifies the path MTU discovery strategy.

no-loopback

Suppresses loop-back of multicast pings.

numeric

Does not resolve domain name system (DNS) names during ping.

pattern

Specifies the hexadecimal digit pattern to fill the packet.

quiet

Prints only the ping summary page.

record-route

Records the route that the packet takes.

size

Specifies the number of bytes to send for a ping request.

timestamp

Displays the timestamp during ping output.

tos

Marks packet with specified type of service (TOS).

ttl

Specifies the maximum packet life-time for a host.

verbose

Displays a detailed output for the ping command.

Operational mode

The ping command tests whether a network host is reachable.

The ping command uses the ECHO_REQUEST datagram (ping) of the ICMP protocol to get an ICMP ECHO_RESPONSE from a host or gateway. ECHO_REQUEST datagrams have an IP and an ICMP header, followed by a *struct timeval* data type and then an arbitrary number of pad bytes that are used to fill the packet.

When the ping command is interrupted by typing <Ctrl>+c, a brief statistical summary is displayed.

ping size

Specifies the number of bytes to send for a ping request.

```
ping { ipv4_address | ipv6_address | hostname } size bytes option
```

ipv4_address

Pings the IPv4 address of the host.

ipv6_address

Pings the IPv6 address of the host.

hostname

A host being pinged. This keyword is used when the host is specified as a host name rather than as an IP address.

bytes

The number of bytes to send for a ping request.

option

Each of the following entries are considered options. These options can be issued consecutively, that is, in the same command line.

adaptive

Adaptively sets interpacket interval.

allow-broadcast

Allows you to ping broadcast address.

audible

Makes a beep sound during every ping, while the device pings for the host details.

bypass-route

Bypasses normal routing tables during ping.

count

Specifies the number of ping requests to send.

deadline

Specifies the number of seconds before which ping expires.

ether-size

Matches the overall size of the data packet with the resultant size of the Layer 3 packet.

flood

Sends 100 ping requests each second.

interface

Specifies an interface that the device must use as the source address.

interval

Specifies the time in seconds for which the device must wait between ping requests.

mark

Specifies that the device must consider the request for special processing.

mtu-discovery

Specifies the path MTU discovery strategy.

no-loopback

Suppresses loop-back of multicast pings.

numeric

Does not resolve domain name system (DNS) names during ping.

pattern

Specifies the hexadecimal digit pattern to fill the packet.

quiet

Prints only the ping summary page.

record-route

Records the route that the packet takes.

size

Specifies the number of bytes to send for a ping request.

timestamp

Displays the timestamp during ping output.

tos

Marks packet with specified type of service (TOS).

ttl

Specifies the maximum packet life-time for a host.

verbose

Displays a detailed output for the ping command.

Operational mode

The ping command tests whether a network host is reachable.

The ping command uses the ECHO_REQUEST datagram (ping) of the ICMP protocol to get an ICMP ECHO_RESPONSE from a host or gateway. ECHO_REQUEST datagrams have an IP and an ICMP header, followed by a *struct timeval* data type and then an arbitrary number of pad bytes that are used to fill the packet.

When the ping command is interrupted by typing <Ctrl>+c, a brief statistical summary is displayed.

This example shows how to specify the number of bytes to send while testing the IP address for network reachability.

```
vyatta@vyatta:~$ ping 2012:dead::1 size 1200
PING 2012:dead::1(2012:dead::1) 1200 data bytes
1208 bytes from 2012:dead::1: icmp_seq=1 ttl=64 time=0.046 ms
1208 bytes from 2012:dead::1: icmp_seq=2 ttl=64 time=0.128 ms
^C
--- 2012:dead::1 ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, time 999ms
rtt min/avg/max/mdev = 0.046/0.087/0.128/0.041 ms
vyatta@VR-1:~$ ping 2012:dead::1
PING 2012:dead::1(2012:dead::1) 56 data bytes
64 bytes from 2012:dead::1: icmp_seq=1 ttl=64 time=0.026 ms
64 bytes from 2012:dead::1: icmp_seq=2 ttl=64 time=0.034 ms
^C
```

ping tos

Marks a packet with a specified time of service (TOS).

ping { ipv4_address | ipv6_address | hostname } tos number option

ipv4_address

Pings the IPv4 address of the host.

ipv6_address

Pings the IPv6 address of the host.

hostname

A host being pinged. This keyword is used when the host is specified as a host name rather than as an IP address.

number

The tos number.

option

Each of the following entries are considered options. These options can be issued consecutively, that is, in the same command line.

adaptive

Adaptively sets interpacket interval.

allow-broadcast

Allows you to ping broadcast address.

audible

Makes a beep sound during every ping, while the device pings for the host details.

bypass-route

Bypasses normal routing tables during ping.

count

Specifies the number of ping requests to send.

deadline

Specifies the number of seconds before which ping expires.

ether-size

Matches the overall size of the data packet with the resultant size of the Layer 3 packet.

flood

Sends 100 ping requests each second.

interface

Specifies an interface that the device must use as the source address.

interval

Specifies the time in seconds for which the device must wait between ping requests.

mark

Specifies that the device must consider the ping request for special processing.

mtu-discovery

Specifies the path MTU discovery strategy.

no-loopback

Suppresses loop-back of multicast pings.

numeric

Does not resolve domain name system (DNS) names during ping.

pattern

Specifies the hexadecimal digit pattern to fill the packet.

quiet

Prints only the ping summary page.

record-route

Records the route that the packet takes.

size

Specifies the number of bytes to send for a ping request.

timestamp

Displays the timestamp during ping output.

tos

Marks packet with specified type of service (TOS).

ttl

Specifies the maximum packet life-time for a host.

verbose

Displays a detailed output for the ping command.

Operational mode

The ping command tests whether a network host is reachable.

The ping command uses the ECHO_REQUEST datagram (ping) of the ICMP protocol to get an ICMP ECHO_RESPONSE from a host or gateway. ECHO_REQUEST datagrams have an IP and an ICMP header, followed by a *struct timeval* data type and then an arbitrary number of pad bytes that are used to fill the packet.

When the ping command is interrupted by typing <Ctrl>+c, a brief statistical summary is displayed.

This example shows how to test a packet for network reachability by defining the time of service as one second.

```
vyatta@vyatta:~$ ping 127.0.0.1 tos 1
PING 127.0.0.1 (127.0.0.1) 56(84) bytes of data.
64 bytes from 127.0.0.1: icmp_req=1 ttl=64 time=0.409 ms
64 bytes from 127.0.0.1: icmp_req=2 ttl=64 time=0.027 ms
^C
--- 127.0.0.1 ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, time 999ms
rtt min/avg/max/mdev = 0.027/0.218/0.409/0.191 ms
```

ping ttl

Specifies the maximum packet life-time for a host.

```
ping { ipv4_address | ipv6_address | hostname } ttl seconds option
```

ipv4_address

The IPv4 address of the host.

ipv6_address

The IPv6 address of the host.

hostname

A host being pinged. This keyword is used when the host is specified as a host name rather than as an IP address.

seconds

The time in milliseconds to specify the maximum packet life-time for a host.

option

Each of the following entries are considered options. These options can be issued consecutively, that is, in the same command line.

adaptive

Adaptively sets interpacket interval.

allow-broadcast

Allows you to ping broadcast address.

audible

Makes a beep sound during every ping, while the device pings for the host details.

bypass-route

Bypasses normal routing tables during ping.

count

Specifies the number of ping requests to send.

deadline

Specifies the number of seconds before which ping expires.

ether-size

Matches the overall size of the data packet with the resultant size of the Layer 3 packet.

flood

Sends 100 ping requests each second.

interface

Specifies an interface that the device must use as the source address.

interval

Specifies the time in seconds for which the device must wait between ping requests.

mark

Specifies that the device must consider the ping request for special processing.

mtu-discovery

Specifies the path MTU discovery strategy.

no-loopback

Supress loop-back of multicast pings.

numeric

Does not resolve domain name system (DNS) names during ping.

pattern

Specifies the hexadecimal digit pattern to fill the packet.

quiet

Prints only the ping summary page.

record-route

Records the route that the packet takes.

size

Specifies the number of bytes to send for a ping request.

timestamp

Displays the timestamp during ping output.

tos

Marks packet with specified type of service (TOS).

ttl

Specifies the maximum packet life-time for a host.

verbose

Displays a detailed output for the ping command.

Operational mode

The ping command tests whether a network host is reachable.

The ping command uses the ECHO_REQUEST datagram (ping) of the ICMP protocol to get an ICMP ECHO_RESPONSE from a host or gateway. ECHO_REQUEST datagrams have an IP and an ICMP header, followed by a *struct timeval* data type and then an arbitrary number of pad bytes that are used to fill the packet.

When the ping command is interrupted by typing <Ctrl>+c, a brief statistical summary is displayed.

This example shows how to specify the maximum packet life-time for a host while testing the host for network reachability. The life-time defined in this example is 200 seconds.

```
vyatta@vyatta:~$ ping 192.1.2.2 ttl 200
PING 192.1.2.2 (192.1.2.2) 56(84) bytes of data.
64 bytes from 192.1.2.2: icmp_req=1 ttl=64 time=1.41 ms
^C
--- 192.1.2.2 ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 1.412/1.412/1.412/0.000 ms
```

ping verbose

Displays a detailed output for the ping command.

ping { ipv4_address | ipv6_address | hostname } verbose option

ipv4_address

Pings the IPv4 address of the host.

ipv6_address

Pings the IPv6 address of the host.

hostname

A host being pinged. This keyword is used when the host is specified as a host name rather than as an IP address.

option

Each of the following entries are considered options. These options can be issued consecutively, that is, in the same command line.

adaptive

Adaptively sets interpacket interval.

allow-broadcast

Allows you to ping broadcast address.

audible

Makes a beep sound during every ping, while the device pings for the host details.

bypass-route

Bypasses normal routing tables during ping.

count

Specifies the number of ping requests to send.

deadline

Specifies the number of seconds before which ping expires.

ether-size

Matches the overall size of the data packet with the resultant size of the Layer-3 packet.

flood

Sends 100 ping requests each second.

interface

Specifies an interface that the device must use as the source address.

interval

Specifies the time in seconds for which the device must wait between ping requests.

mark

Specifies that the device must consider the ping request for special processing.

mtu-discovery

Specifies the path MTU discovery strategy.

no-loopback

Suppresses loop-back of multicast pings.

numeric

Does not resolve domain name system (DNS) names during ping.

pattern

Specifies the hexadecimal digit pattern to fill the packet.

quiet

Prints only the ping summary page.

record-route

Records the route that the packet takes.

size

Specifies the number of bytes to send for a ping request.

timestamp

Displays the timestamp during ping output.

tos

Marks packet with specified type of service (TOS).

ttl

Specifies the maximum packet life-time for a host.

verbose

Displays a detailed output for the ping command.

Operational mode

The ping command tests whether a network host is reachable.

The ping command uses the ECHO_REQUEST datagram (ping) of the ICMP protocol to get an ICMP ECHO_RESPONSE from a host or gateway. ECHO_REQUEST datagrams have an IP and an ICMP header, followed by a *struct timeval* data type and then an arbitrary number of pad bytes that are used to fill the packet.

When the ping command is interrupted by typing <Ctrl>+c, a brief statistical summary is displayed.

protocols nsm log

Enables logging for NSM.

set protocols nsm { all | events | ha | kernel | packet }
delete protocols nsm { all | events | ha | kernel | packet }
show protocols nsm { all | events | ha | kernel | packet }

None

all

Enables all NSM logs.

events

Enables only NSM event logs.

ha

Enables only NSM high availability (HA) logs.

kernel

Enables only NSM kernel logs.

packet

Enables only NSM packet logs.

Configuration mode

```
protocols {
   nsm {
      log {
            all
            events
            ha
            kernel
            packet
            }
            }
        }
```

Use the set form of this command to enable NSM logs. Use the delete form of this command to remove NSM logs. Use the show form of this command to view NSM logs.

protocols nsm log ha

Enables logging for NSM HA.

```
set protocols nsm ha { all }
delete protocols nsm ha { all }
```

show protocols nsm ha { **all** }

None

all

Enables all NSM HA logs

Configuration mode

Use the set form of this command to enable NSM high availability (HA) logs.

Use the delete form of this command to remove NSM HA logs.

Use the show form of this command to view NSM HA logs.

reset ip route kernel

Clears all the entries from the IP kernel route.

reset ip route kernel

Operational mode

Use this command to clear the entries from the IP kernel route.

reset ipv6 route kernel

Clears all the entries from the IPv6 kernel route.

reset ipv6 route kernel

Operational mode

Use this command to clear the entries from the IPv6 kernel route.

resources group address-group

Defines a group of IP addresses that are referenced in firewall rules.

```
set resources group address-group group-name { address address | description desc
}
delete resources group address-group group-name { address address | description
desc }
show resources group address-group group-name { address address | description
desc }
```

group-name

Name of the firewall address group.

address

IPv4 address or range of IPv4 addresses. Specify IPv4 address ranges by separating two contiguous IPv4 addresses with a hyphen, for example, 10.0.0.1-10.0.0.50. The maximum number of addresses that you can add to an address group is 1024.

desc

Description of the firewall address group.

Configuration mode

```
resources {
   group {
      address-group group-name {
        address address
        description desc
        }
   }
}
```

Use this command to specify an address group. A firewall address group is a collection of host IP addresses and address ranges that, once defined, can be collectively referenced within a firewall command.

A firewall address group is considered matched if the packet address matches any address or address range within the group.

Use the set form of this command to specify the address group.

Use the delete form of this command to remove a firewall address group or its members.

Use the show form of this command to view the configuration of a firewall address group.

resources group icmp-group

Defines a group of ICMP types that may be referenced in firewall rules, policy-based routing rules, or QoS rules.

```
set resources group icmp-group group-name { description description | name name |
type number [ code number ] }
```

```
delete resources group icmp-group group-name [ description description | name
name | type number [ code number ] ]
```

show resources group icmp-group group-name [description description | name name
| type number [code number]]

group-name

Name of the IPv4 ICMP group.

description

Description of the IPv4 ICMP group.

name

Name of an ICMP type.

type number

IPv4 ICMP type (0-255).

code number

IPv4 ICMP code (0-255).

Configuration mode

```
resources {
   group {
      icmp-group group-name {
         description description
         name name
         type number {
             code number
         }
      }
}
```

Use this command to define an IPv4 Internet Control Message Protocol (ICMP) group. An ICMP group is a collection of ICMP types that, once defined, can be collectively referenced in firewall rules, policy-based routing rules, and Quality of Service (QoS) rules.

An ICMP group is considered matched if any ICMP type in the group is matched.

Use the set form of this command to define an ICMP group.

Use the delete form of this command to remove an ICMP group or its members.

Use the show form of this command to display an ICMP group or its members.

resources group icmpv6-group

Defines a group of ICMPv6 types that may be referenced in firewall rules, policy-based routing rules, or QoS rules.

```
set resources group icmpv6-group group-name { description description | name name
| type number [ code number ] }
delete resources group icmpv6-group group-name [ description description | name
name | type number [ code number ] ]
show resources group icmpv6-group group-name [ description description | name
name | type number [ code number ] ]
```

group-name

Name of an ICMPv6 group.

description

Describes an ICMPv6 group.

name

Specifies the name of an ICMPv6 type.

type number

ICMPv6 type (0-255).

code number

ICMPv6 code (0-255).

Configuration mode

```
resources {
   group {
      icmpv6-group group-name {
         description description
         name name
        type number {
            code number
         }
      }
}
```

Use this command to define an Internet Control Message Protocol Version 6 (ICMPv6) group. An ICMPv6 group is a collection of ICMPv6 types that, once defined, can be collectively referenced in firewall rules, policy-based routing rules, and Quality of Service (QoS) rules.

An ICMPv6 group is considered matched if any ICMPv6 type in the group is matched.

Use the set form of this command to define an ICMPv6 group.

Use the delete form of this command to remove an ICMPv6 group or its members.

Use the show form of this command to display an ICMPv6 group or its members.

resources group port-group

Defines a group of ports that are referenced in firewall rules.

```
set resources group port-group port-group-name { description description { port [
name | 1-65535 | start - end ] }
delete resources group port-group port-group-name { description description |
```

```
port [ name | 1-65535 | start - end ] }
```

show resources group port-group port-group-name { description description | port
name | 1-65535 | start - end] }

port-group-name

Name of the port group.

description

Description of the port group.

port [name | 1-65535 | start - end]

Port group parameters.

name

Name of an IP service; for example, http. You can specify any service name in the file /etc/services.

1-65535

Port number (1-65535).

start-end

Range of ports; for example, 1001-1005.

Configuration mode

```
resources {
 group {
  port-group group-name {
   port name
   description desc
  }
 }
}
```

Use this command to define a network group. A network group is a collection of network addresses that, once defined, can be collectively referenced within a firewall command. Only one port group can be specified. The port group must already be defined. A packet is considered a match for an address, a network, or a port group if it matches any host IP address, network address, or port name or number, respectively, in the group. However, if more than one group is specified, the packet must be a match for both groups in order to be considered a match. For example, if an address group and a port group are both specified, the packet's destination must match at least one item in the address group and at least one item in the port group.

Use the set form of this command to define a network group.

Use the delete form of this command to remove a network group or its members.

Use the show form of this command to view the configuration of a network group.

show ip forwarding

Displays IP forwarding status.

show ip forwarding

Operational mode

Use this command to display IP forwarding status.

The following example shows how to display the status of IP forwarding.

```
vyatta@vyatta:~$ show ip forwarding
IP forwarding is on
vyatta@vyatta:~$
```

show ip route

Displays routes stored in the Routing Information Base (RIB) and Forwarding Information Base (FIB).

```
show ip route [ ipv4 | ipv4net ]
```

Lists all routes stored in the RIB and FIB.

ipv4

Optional. An IP address.

ipv4net

Optional. A prefix.

Operational mode

Use this command to display routes stored in the RIB and FIB.

You can also see the routes shown in the FIB by using show ip route forward.

The following example shows how to display routes stored in the RIB and FIB.

```
0>* 10.192.130.0/24 [110/11] via 10.1.0.66, dp0p0p0, 05:35:15
0>* 10.192.131.0/24 [110/11] via 10.1.0.66, dp0p0p0, 05:35:15
C>* 127.0.0.0/8 is directly connected, lo
0>* 172.16.0.0/24 [110/11] via 10.1.0.4, dp0p0p0, 05:35:15
0>* 172.16.1.0/24 [110/11] via 10.1.0.4, dp0p0p0, 05:35:15
0>* 172.16.2.0/24 [110/11] via 10.1.0.4, dp0p0p0, 05:35:15
0>* 172.16.3.0/24 [110/11] via 10.1.0.4, dp0p0p0, 05:35:15
0>* 172.16.4.0/24 [110/11] via 10.1.0.4, dp0p0p0, 05:35:15
0>* 172.16.5.0/24 [110/11] via 10.1.0.4, dp0p0p0, 05:35:15
0>* 172.16.6.0/24 [110/11] via 10.1.0.4, dp0p0p0, 05:35:15
0>* 172.16.6.0/24 [110/11] via 10.1.0.4, dp0p0p0, 05:35:15
0>* 172.16.7.0/24 [110/11] via 10.1.0.4, dp0p0p0, 05:35:15
0>* 172.16.8.0/24 [110/11] via 10.1.0.4, dp0p0p0, 05:35:15
0>* 172.16.9.0/24 [110/11] via 10.1.0.4, dp0p0p0, 05:35:15
0>* 172.16.234.0/25 is directly connected, dp0p0p1
S>* 192.94.202.0/24 [1/0] via 172.16.234.27, dp0p0p1
```

The following example shows how to display information for the route to the 10.192.128.1 IP address.

```
vyatta@vyatta:~$ show ip route 10.192.128.1
Routing entry for 10.192.128.1/32
Known via "ospf", distance 110, metric 11, best
Last update 09:47:07 ago
* 10.1.0.66, via dp0p0p0
vyatta@vyatta:~$
```

show ip route longer-prefixes

Displays prefixes in the Routing Information Base (RIB) that are longer than a specific IP address or prefix.

show ip route *ipv4net* **longer-prefixes**

ipv4net

Mandatory. An IP address or prefix.

Operational mode

Use this command to display all prefixes in the RIB that are longer than a specific IP address or prefix.

The following example shows how to display prefixes that are longer than the 10.192.128.0/24 prefix.

```
O>* 10.192.128.1/32 [110/11] via 10.1.0.66, dp0p0p0, 09:36:20
vyatta@vyatta:~$
```

show ip route connected

Displays directly connected routes.

show ip route connected

Operational mode

Use this command to display routes that are directly connected to the local system.

The following example shows how to display directly connected routes.

```
vyatta@vyatta:~$ show ip route connected
Codes: K - kernel route, C - connected, S - static, R - RIP, O - OSPF,
        I - ISIS, B - BGP, > - selected route, * - FIB route
C>* 10.1.0.0/24 is directly connected, dp0p0p0
C>* 127.0.0.0/8 is directly connected, lo
C>* 172.16.234.0/25 is directly connected, dp0p0p1
vyatta@vyatta:~$
```

show ip route forward

Displays routes stored in the Forwarding Information Base (FIB).

```
show ip route forward [ ipv4net ]
```

Displays routes stored in the FIB.

ipv4net

Optional. A route for which information from the kernel forwarding table is displayed.

Operational mode

Use this command to display routes that are stored in the FIB.

The FIB contains multiple equal-cost paths, if they exist. Multiple equal-cost paths are needed before equal-cost multipath (ECMP) routing or WAN load balancing is performed.

The following example shows how to display routes stored in the FIB.

```
vyatta@vyatta:~$ show ip route forward
default via 10.1.0.1 dev dp0p0p0 proto zebra
10.1.0.0/24 dev dp0p0p0 proto kernel scope link src 10.1.0.62
10.192.32.0/24 via 10.1.0.45 dev dp0p0p0 proto zebra metric 20
```

```
10.192.128.0/24 via 10.1.0.66 dev dp0p0p0 proto zebra metric 11
10.192.128.1 via 10.1.0.66 dev dp0p0p0 proto zebra metric 11
10.192.129.0/24 via 10.1.0.66 dev dp0p0p0 proto zebra metric 11
10.192.130.0/24 via 10.1.0.66 dev dp0p0p0 proto zebra metric 11
10.192.131.0/24 via 10.1.0.66 dev dp0p0p0 proto zebra metric 11
172.16.0.0/24 via 10.1.0.4 dev dp0p0p0 proto zebra metric 11
172.16.1.0/24 via 10.1.0.4 dev dp0p0p0 proto zebra metric 11
172.16.2.0/24 via 10.1.0.4 dev dp0p0p0 proto zebra metric 11
172.16.3.0/24 via 10.1.0.4 dev dp0p0p0 proto zebra metric 11
172.16.4.0/24 via 10.1.0.4 dev dp0p0p0 proto zebra metric 11
172.16.5.0/24 via 10.1.0.4 dev dp0p0p0 proto zebra metric 11
172.16.6.0/24 via 10.1.0.4 dev dp0p0p0 proto zebra metric 11
172.16.7.0/24 via 10.1.0.4 dev dp0p0p0 proto zebra metric 11
172.16.8.0/24 via 10.1.0.4 dev dp0p0p0 proto zebra metric 11
172.16.9.0/24 via 10.1.0.4 dev dp0p0p0 proto zebra metric 11
172.16.234.0/25 dev dp0p0p1 proto kernel scope link src 172.16.234.23
192.94.202.0/24 via 172.16.234.27 dev dp0p0p1 proto zebra
vyatta@vyatta:~$
```

The following example shows how to display information from the FIB about the 10.1.0.0/24 route.

```
vyatta@vyatta:~$ show ip route forward 10.1.0.0/24
10.1.0.0/24 dev dp0p0p0 proto kernel scope link src 10.1.0.62
vyatta@vyatta:~$
```

show ip route kernel

Displays kernel routes.

show ip route kernel

Operational mode

Use this command to display kernel routes. Kernel routes are routes that have been added through a means other than by using the Vyatta CLI; for example, by using the operating system **route** command as shown here:

route add -net 10.172.24.0 netmask 255.255.255.0 gw 10.1.0.1

The following example shows how to display kernel routes.

```
vyatta@vyatta:~$ show ip route kernel
Codes: K - kernel route, C - connected, S - static, R - RIP, O - OSPF,
I - ISIS, B - BGP, > - selected route, * - FIB route
K>* 10.172.24.0/24 via 10.1.0.1, dp0p0p0
vyatta@vyatta:~$
```

show ip route static

Displays static routes in the Routing Information Base (RIB).

```
show ip route static
```

Operational mode

Use this command to display static routes in the RIB.

The following example shows how to display static routes in the RIB.

show ip route summary

Displays a summary of routes.

show ip route summary

Operational mode

Use this command to display a summary of the various routes by route source.

The following example shows how to display a summary of routes.

vyatta@vyatta:~\$	show ip route summar	У
Route Source	Routes	FIB
connected	4	4
static	2	2
ospf	1	0
ebgp	0	0
ibgp	289016	289011
Totals	289023	289017
vyatta@vyatta:~\$		

show ip route supernets-only

Displays supernet routes.

show ip route supernets-only

Operational mode

Use this command to display supernet routes.

Supernet routes are routes that have a subnet mask that is less specific than the usual classful mask.

The following example shows how to display supernet routes.

show ip route table

Displays routes stored in an alternate routing table.

show ip route table table-number

table table-number

An alternate routing table.

Operational mode

Use this command to view routes stored in an alternate routing table. Alternate routing tables are used with policy-based routing. Refer to *Policy-based Routing Configuration Guide* for information on policy-based routing.

The following example shows how to display routes in alternate routing table 5.

show ip route variance

Detects the routes that are missing from the RIB, kernel, and data plane table and stores the discrepancy in a file.

show ip route variance

Operational mode

Detects the routes that are missing from the RIB, kernel, and data plane table and stores the discrepancy in the following file: /home/<username>/ vyatta_rtvariance.output. A missing route is identified by using codes such as R for RIB, K for kernel, and D for data plane. This command verifies only active routes and interfaces and can help during debugging.

Note: IP Infusion Inc. recommends that you use the command in a stable environment to ensure that you do not get wrong results. The router may take more time to generate the output if the system has millions of routes.

The following example shows how to store the discrepancy in the following file: /home/ vyatta/vyatta_rtvariance.output. The following output indicates that an IPv4 route is missing from the kernel.

```
vyatta@vyatta# show ip route variance
Output is dumped in the file: /home/vyatta/vyatta_rtvariance.output
```

show ip route variance console

Detects the routes that are missing from the RIB, kernel, and data plane table and displays the discrepancy at the console.

show ip route variance console

Operational mode

Compares the routes in the RIB, kernel, and data plane table, detects missing routes, and displays the discrepancy at the console. The discrepancy contains IPv4 routes and addresses that are missing from the RIB, kernel, and data plane table. A missing route is identified by using codes such as R for RIB, K for kernel, and D for data plane. This command verifies only active routes and interfaces and can help during debugging.

Note: IP Infusion Inc. recommends that you use the command in a stable environment to ensure that you do not get wrong results. The router may take more time to generate the output if the system has millions of routes.

The following example shows how to display the discrepancy information at the console. The output displays the following information:

- The interface variance table indicates that the 88.88.88.4 address which is configured on the lo4 interface is missing from the data plane.
- The route variance table indicates that the 200.9.9.0/32 address route with the 12.12.12.20 nexthop is missing from both the kernel and data plane.

vyatta@vyatta# show ip route variance console

```
Codes: R - RIB, K - Kernel, D - Dataplane
(Indicates the table Id in which the address/route is missing)
Interface Variance Table:
D 88.88.88.4 lo4 (present in Kernel)
K 201.202.203.0 dp0s8 (present in RIB)
K 6.6.6.0 dp0s7.1 (present in RIB)
R 12.12.12.0 dp0s7 (present in Kernel)
Route Variance Table:
Table Absence Route

      def
      D
      100.4.4.4/32 via 12.12.12.18

      def
      K
      100.1.1.1/32 via 12.12.12.19

      def
      KD
      200.9.9.0/24 via 12.12.12.20

      def
      R
      100.1.1.1/32 via 12.12.12.17

      def
      R
      200.1.1.1/32 via 12.12.12.17

def R
                    200.1.1.1/32 via 12.12.12.20
def RK
                    100.4.4.4/32 via 12.12.12.28
def
        RK
                      200.20.20.20/32 via 12.12.12.30
```

The following example shows how to display the discrepancy at the console. The output indicates that all tables are synchronized and that no routes and interfaces are missing.

vyatta@vyatta# show ip route variance console No Variance, Inteface addresses and Routes are in sync

show ipv6 route

Displays IPv6 routes stored in the Routing Information Base (RIB) and Forwarding Information Base (FIB).

```
show ipv6 route [ ipv6 | ipv6net ]
```

Displays all IPv6 routes in the RIB and FIB.

ipv6

Optional. An IPv6 address.

ipv6net

Optional. An IPv6 prefix.

Operational mode

Use this command to display IPv6 routes stored in the RIB and FIB.

You can also see the routes shown in the FIB by using show ip route forward.

show ipv6 route longer-prefixes

Displays IPv6 prefixes in the Routing Information Base (RIB) that are longer than a specific IPv6 address or prefix.

show ipv6 route *ipv6net* **longer-prefixes**

ipv6net

Mandatory. An IPv6 address or prefix.

Operational mode

Use this command to display all prefixes in the RIB that are longer than a specific IPv6 address or prefix.

show ipv6 route bgp

Displays IPv6 Border Gateway Protocol (BGP) routes.

show ipv6 route bgp

Operational mode

Use this command to display IPv6 BGP routes.

show ipv6 route connected

Displays IPv6 connected routes.

show ipv6 route connected

Operational mode

Use this command to display IPv6 routes that are directly connected to the local system.

show ipv6 route forward

Displays IPv6 routes stored in the Forwarding Information Base (FIB).

show ipv6 route forward [ipv6net]

Displays IPv6 routes stored in the FIB.

ipv6net

Optional. An IPv6 route for which information from the kernel forwarding table is displayed.

Operational mode

Use this command to display routes that are stored in the FIB.

The FIB contains multiple equal-cost paths, if they exist. Multiple equal-cost paths are needed before equal-cost multipath (ECMP) routing or WAN load balancing is performed.

show ipv6 route kernel

Displays IPv6 kernel routes.

show ipv6 route kernel

Operational mode

Use this command to display IPv6 kernel routes. Kernel routes are routes that have been added through a means other than by using the Vyatta CLI.

show ipv6 route ripng

Displays IPv6 Routing Information Protocol next generation (RIPng) routes.

show ipv6 route ripng

Operational mode

Use this command to display IPv6 RIPng routes.

show ipv6 route static

Displays IPv6 static routes.

show ipv6 route static

Operational mode

Use this command to display IPv6 static routes.

show ipv6 route variance

Detects the IPv6 routes that are missing from the RIB, kernel, and data plane table and stores the discrepancy in a file.

show ipv6 route variance

Operational mode

Compares the routes in the RIB, kernel, and data plane table, detects missing IPv6 routes, and stores the discrepancy in the following file: /home/<username>/

vyatta_rtvariance.output. The discrepancy contains IPv6 routes and addresses that are missing from the RIB, kernel, or data plane table. A missing route is identified by using codes such as R for RIB, K for kernel, and D for data plane. This command verifies only active routes and interfaces and can help during debugging.

Note: IP Infusion Inc. recommends that you use the command in a stable environment to ensure that you do not get wrong results. The router may take more time to generate the output if the system has millions of routes.

The following example shows how to store the discrepancy in the following file: /home/ <username>/vyatta_rtvariance.output.

```
vyatta@vyatta# show ipv6 route variance
Output is dumped in the file: /home/vyatta/vyatta_rtvariance.output
```

show ipv6 route variance console

Detects IPv6 routes that are missing from the RIB, kernel, and data plane table and displays the discrepancy at the console.

```
show ipv6 route variance console
```

Operational mode

Detects the IPv6 routes that are missing from the RIB, kernel, and data plane tables and displays the discrepancy at the console. The discrepancy contains IPv6 routes and addresses that are missing from the RIB, kernel, and data plane table. A missing route is identified by using codes such as R for RIB, K for kernel, and D for data plane. This command verifies only active routes and interfaces and can help during debugging.

Note: IP Infusion Inc. recommends that you use the command in a stable environment to ensure that you do not get wrong results. The router may take more time to generate the output if the system has millions of routes.

The following example shows how to display the discrepancy at the console. The following output indicates that 2626:1111:2222:3333:4444:5555:8888:1 address is missing from the data plane. The route variance table indicates that all tables are synchronized and that no IPv6 route is missing.

```
vyatta@vyatta# show ipv6 route variance console
Codes: R - RIB, K - Kernel, D - Dataplane (Indicates the table Id in which
the address/route is missing)
Interface Variance Table:
D 2626:1111:2222:3333:4444:5555:8888:1 dp0s3 (present in Kernel)
```

Route Variance Table: Routes are in sync

show monitoring protocols rib

Displays Routing Information Base (RIB) debugging flags.

```
show monitoring protocols rib
```

Operational mode

Use this command to display RIB debugging flags.

traceroute as-path

Displays the route that packets take to a network host.

```
traceroute [ ipv4 | ipv6 ] host as-path [ options ]
```

ipv4

Explicitly force IPv4 traceouting. By default, the program will try to resolve the name given, and choose the appropriate protocol automatically. If resolving a host name returns both IPv4 and IPv6 addresses, traceroute will use IPv4.

ipv6

Explicitly force IPv6 traceouting. By default, the program will try to resolve the name given, and choose the appropriate protocol automatically. If resolving a host name returns both IPv4 and IPv6 addresses, traceroute will use IPv6.

host

A host that is the destination for the trace. The host is specified as a name (if DNS is being used on the network), as an IPv4 or IPv6 address, or as a MAC address (format h:h:h:h:h:h:h).

as-path

Performs AS path lookups in routing registries and print results directly after the corresponding addresses.

options

The following entries are options. Multiple options can be included on the same command line.

bypass-routing

Bypasses the normal routing tables and send directly to a host on an attached network. If the host is not on a directly-attached network, an error is returned. This option can be used to ping a local host through an interface that has no route through it.

debug-socket

Enables socket level debugging.

first-ttl value

Specifies the first time-to-live value. Defaults to 1.

gateway address

Routes the request through a specified gateway.

icmp-echo

Uses ICMP echo for the traceroute probe.

icmp-extensions

Shows ICMP extensions (rfc4884). The general form is *CLASS/TYPE:* followed by a hexadecimal dump.

interface value

Specifies the interface that the device must use for traceroute requests.

interval value

Specifies the time in seconds between traceroute requests from the device.

max-ttl value

Specifies the maximum number of hops for the probe.

no-fragment

Does not fragment the probe packets.

num-queries number

Specifies the number of probe packets per hop. The default is 3.

port number

For UDP tracing, specifies the destination port base traceroute will use (the destination port number will be incremented by each probe). For ICMP tracing, specifies the initial icmp sequence value (incremented by each probe too). For TCP specifies just the (constant) destination port to connect.

seq-queries number

Specifies the number of sequential probe packets.

source-addr host

Specifies an alternative source host by hostname, IPv4 address, or MAC address.

tcp-syn

Uses TCP SYN for the probes.

tos value

Marks the packets with the specified Type of Service (TOS) value.

version

Displays the timestamp during ping output.

wait-time value

Specifies the time (seconds) to wait for a response from the probe. Default is 5 seconds.

Operational mode

Use this command to perform a "traceroute" operation for a network host. This operation uses the IP protocol time-to-live (TTL) field and attempts to elicit an Internet Control Message Protocol (ICMP) TIME_EXCEEDED response from each gateway along the path to a host to track the route that a set of packets follows. It attempts to trace the route an IP packet follows to an Internet host by launching User Datagram Protocol (UDP) probe packets with a small time to live, then listening for an ICMP "Time exceeded" reply from a gateway.

The following example illustrates a traceroute to google.com including AS path information.

```
vyatta@vyatta#traceroute google.com as-path
traceroute to google.com (216.58.192.14), 30 hops max, 60 byte packets
1 10.18.170.1 (10.18.170.1) [*] 0.681 ms 0.529 ms 0.580 ms
2 10.31.23.6 (10.31.23.6) [*] 0.476 ms 0.433 ms 0.481 ms
3 10.254.33.1 (10.254.33.1) [*] 0.864 ms 0.831 ms 0.826 ms
4 144.49.130.145 (144.49.130.145) [AS29791/AS21948] 8.022 ms 1.183 ms
1.295 ms
5 ae6-395.edge8.sanjose1.level3.net (209.244.104.65) [AS3356] 2.106 ms
2.046 ms 2.006 ms
6 ae-1-60.edge1.sanjose3.level3.net (4.69.152.16) [AS3356] 2.887 ms * *
7 72.14.223.91 (72.14.223.91) [AS15169] 2.878 ms 2.972 ms 2.938 ms
8 209.85.249.3 (209.85.249.3) [AS15169] 3.430 ms 4.754 ms 3.460 ms
9 74.125.37.41 (74.125.37.41) [AS15169] 4.568 ms 4.516 ms 4.455 ms
10 nuq04s29-in-f14.1e100.net (216.58.192.14) [AS15169] 3.159 ms 3.134 ms
3.097 ms
```

traceroute bypass-routing

Displays the route that packets take to a network host.

```
traceroute [ ipv4 | ipv6 ] host bypass-routing [ options ]
```

ipv4

Explicitly force IPv4 traceouting. By default, the program will try to resolve the name given, and choose the appropriate protocol automatically. If resolving a host name returns both IPv4 and IPv6 addresses, traceroute will use IPv4.

ipv6

Explicitly force IPv6 traceouting. By default, the program will try to resolve the name given, and choose the appropriate protocol automatically. If resolving a host name returns both IPv4 and IPv6 addresses, traceroute will use IPv6.

host

A host that is the destination for the trace. The host is specified as a name (if DNS is being used on the network), as an IPv4 or IPv6 address, or as a MAC address (format h:h:h:h:h:h:h).

bypass-routing

Bypasses the normal routing tables and send directly to a host on an attached network. If the host is not on a directly-attached network, an error is returned. This option can be used to ping a local host through an interface that has no route through it.

options

The following entries are options. Multiple options can be included on the same command line.

as-path

Performs AS path lookups in routing registries and print results directly after the corresponding addresses.

debug-socket

Enables socket level debugging.

first-ttl value

Specifies the first time-to-live value. Defaults to 1.

gateway address

Routes the request through a specified gateway.

icmp-echo

Uses ICMP echo for the traceroute probe.

icmp-extensions

Shows ICMP extensions (rfc4884). The general form is *CLASS/TYPE:* followed by a hexadecimal dump.

interface value

Specifies the interface that the device must use for traceroute requests.

interval value

Specifies the time in seconds between traceroute requests from the device.

max-ttl value

Specifies the maximum number of hops for the probe.

no-fragment

Does not fragment the probe packets.

num-queries number

Specifies the number of probe packets per hop. The default is 3.

port number

For UDP tracing, specifies the destination port base traceroute will use (the destination port number will be incremented by each probe). For ICMP tracing, specifies the initial icmp sequence value (incremented by each probe too). For TCP specifies just the (constant) destination port to connect.

seq-queries number

Specifies the number of sequential probe packets.

source-addr host

Specifies an alternative source host by hostname, IPv4 address, or MAC address.

tcp-syn

Uses TCP SYN for the probes.

tos value

Marks the packets with the specified Type of Service (TOS) value.

version

Displays the timestamp during ping output.

wait-time value

Specifies the time (seconds) to wait for a response from the probe. Default is 5 seconds.

Operational mode

Use this command to perform a "traceroute" operation for a network host. This operation uses the IP protocol time-to-live (TTL) field and attempts to elicit an Internet Control Message Protocol (ICMP) TIME_EXCEEDED response from each gateway along the path to a host to track the route that a set of packets follows. It attempts to trace the route an IP packet follows to an Internet host by launching User Datagram Protocol (UDP) probe packets with a small time to live, then listening for an ICMP "Time exceeded" reply from a gateway.

The following example illustrates a traceroute to google.com bypassing the normal routing tables. Note that an error message appears because google.com is not on a directly attached network.

```
vyatta@vyatta#traceroute google.com bypass-routing
traceroute to google.com (216.58.192.14), 30 hops max, 60 byte packets
connect:network is unreachable
```

traceroute debug-socket

Displays the route that packets take to a network host.

```
traceroute [ ipv4 | ipv6 ] host debug-socket [ options ]
```

ipv4

Explicitly force IPv4 traceouting. By default, the program will try to resolve the name given, and choose the appropriate protocol automatically. If resolving a host name returns both IPv4 and IPv6 addresses, traceroute will use IPv4.

ipv6

Explicitly force IPv6 traceouting. By default, the program will try to resolve the name given, and choose the appropriate protocol automatically. If resolving a host name returns both IPv4 and IPv6 addresses, traceroute will use IPv6.

host

A host that is the destination for the trace. The host is specified as a name (if DNS is being used on the network), as an IPv4 or IPv6 address, or as a MAC address (format h:h:h:h:h:h:h).

debug-socket

Enables socket level debugging.

options

The following entries are options. Multiple options can be included on the same command line.

as-path

Performs AS path lookups in routing registries and print results directly after the corresponding addresses.

bypass-routing

Bypasses the normal routing tables and send directly to a host on an attached network. If the host is not on a directly-attached network, an error is returned. This option can be used to ping a local host through an interface that has no route through it.

first-ttl value

Specifies the first time-to-live value. Defaults to 1.

gateway address

Routes the request through a specified gateway.

icmp-echo

Uses ICMP echo for the traceroute probe.

icmp-extensions

Shows ICMP extensions (rfc4884). The general form is *CLASS/TYPE:* followed by a hexadecimal dump.

interface value

Specifies the interface that the device must use for traceroute requests.

interval value

Specifies the time in seconds between traceroute requests from the device.

max-ttl value

Specifies the maximum number of hops for the probe.

no-fragment

Does not fragment the probe packets.

num-queries number

Specifies the number of probe packets per hop. The default is 3.

port number

For UDP tracing, specifies the destination port base traceroute will use (the destination port number will be incremented by each probe). For ICMP tracing, specifies the initial icmp sequence value (incremented by each probe too). For TCP specifies just the (constant) destination port to connect.

seq-queries number

Specifies the number of sequential probe packets.

source-addr host

Specifies an alternative source host by hostname, IPv4 address, or MAC address.

tcp-syn

Uses TCP SYN for the probes.

tos value

Marks the packets with the specified Type of Service (TOS) value.

version

Displays the timestamp during ping output.

wait-time value

Specifies the time (seconds) to wait for a response from the probe. Default is 5 seconds.

Operational mode

Use this command to perform a "traceroute" operation for a network host. This operation uses the IP protocol time-to-live (TTL) field and attempts to elicit an Internet Control Message Protocol (ICMP) TIME_EXCEEDED response from each gateway along the path to a host to track the route that a set of packets follows. It attempts to trace the route an IP packet follows to an Internet host by launching User Datagram Protocol (UDP) probe packets with a small time to live, then listening for an ICMP "Time exceeded" reply from a gateway.

The following example illustrates a traceroute to google.com with socket level debugging enabled.

```
vyatta@vyatta#traceroute google.com debug-socket
traceroute to google.com (216.58.216.14), 30 hops max, 60 byte packets
1 gateway.attlocal.net (10.0.6.1) 0.422 ms 0.399 ms 0.498 ms
2 75-25-153-214.uvs.sntcca.sbcglobal.net (75.25.153.214) 16.520 ms 6.484
ms 6.460 ms
3 76-198-128-2.lightspeed.mtvwca.sbcglobal.net (76.198.128.2) 33.529 ms
36.814 ms 26.584 ms
4 71.145.0.192 (71.145.0.192) 26.546 ms 39.056 ms 38.523 ms
5
  12.83.39.189 (12.83.39.189) 39.763 ms 30.819 ms 44.405 ms
6 12.122.136.181 (12.122.136.181) 44.407 ms 43.366 ms 43.334 ms
7 * * *
8 216.239.49.170 (216.239.49.170) 28.635 ms 216.239.49.168
 (216.239.49.168) 28.293 ms
                                                          216.239.49.170
(216.239.49.170) 25.805 ms
9 209.85.246.253 (209.85.246.253) 32.914 ms 34.112 ms 209.85.246.20
(209.85.246.20) 30.330 ms
10 64.233.174.204 (64.233.174.204) 36.979 ms 36.492 ms 38.584 ms
11 64.233.175.151 (64.233.175.151) 37.497 ms 37.496 ms 64.233.174.189
 (64.233.174.189) 37.503 ms
12 209.85.142.91 (209.85.142.91) 36.126 ms 36.735 ms 36.686 ms
```

```
13 lax02s21-in-f14.1e100.net (216.58.216.14) 34.280 ms 32.453 ms 31.764 ms
```

traceroute first-ttl

Displays the route that packets take to a network host.

```
traceroute [ ipv4 | ipv6 ] host first-ttl value [ options ]
```

ipv4

Explicitly force IPv4 traceouting. By default, the program will try to resolve the name given, and choose the appropriate protocol automatically. If resolving a host name returns both IPv4 and IPv6 addresses, traceroute will use IPv4.

ipv6

Explicitly force IPv6 traceouting. By default, the program will try to resolve the name given, and choose the appropriate protocol automatically. If resolving a host name returns both IPv4 and IPv6 addresses, traceroute will use IPv6.

host

A host that is the destination for the trace. The host is specified as a name (if DNS is being used on the network), as an IPv4 or IPv6 address, or as a MAC address (format h:h:h:h:h:h:h).

first-ttl value

Specifies the first time-to-live value. Defaults to 1.

options

The following entries are options. Multiple options can be included on the same command line.

as-path

Performs AS path lookups in routing registries and print results directly after the corresponding addresses.

bypass-routing

Bypasses the normal routing tables and send directly to a host on an attached network. If the host is not on a directly-attached network, an error is returned. This option can be used to ping a local host through an interface that has no route through it.

debug-socket

Enables socket level debugging.

gateway address

Routes the request through a specified gateway.

icmp-echo

Uses ICMP echo for the traceroute probe.

icmp-extensions

Shows ICMP extensions (rfc4884). The general form is *CLASS/TYPE:* followed by a hexadecimal dump.

interface value

Specifies the interface that the device must use for traceroute requests.

interval value

Specifies the time in seconds between traceroute requests from the device.

max-ttl value

Specifies the maximum number of hops for the probe.

no-fragment

Does not fragment the probe packets.

num-queries number

Specifies the number of probe packets per hop. The default is 3.

port number

For UDP tracing, specifies the destination port base traceroute will use (the destination port number will be incremented by each probe). For ICMP tracing, specifies the initial icmp sequence value (incremented by each probe too). For TCP specifies just the (constant) destination port to connect.

seq-queries number

Specifies the number of sequential probe packets.

source-addr host

Specifies an alternative source host by hostname, IPv4 address, or MAC address.

tcp-syn

Uses TCP SYN for the probes.

tos value

Marks the packets with the specified Type of Service (TOS) value.

version

Displays the timestamp during ping output.

wait-time value

Specifies the time (seconds) to wait for a response from the probe. Default is 5 seconds.

Operational mode

Use this command to perform a "traceroute" operation for a network host. This operation uses the IP protocol time-to-live (TTL) field and attempts to elicit an Internet Control Message Protocol (ICMP) TIME_EXCEEDED response from each gateway along the path to a host to track the route that a set of packets follows. It attempts to trace the route an IP packet follows to an Internet host by launching User Datagram Protocol (UDP) probe packets with a small time to live, then listening for an ICMP "Time exceeded" reply from a gateway.

The following example illustrates a traceroute to google.com with the first time-to-live set to 3.

```
vyatta@vyatta#traceroute google.com first-ttl 3
traceroute to google.com (74.125.224.7), 30 hops max, 60 byte packets
3 76-198-128-2.lightspeed.mtvwca.sbcglobal.net (76.198.128.2) 36.929 ms
38.025 ms 38.016 ms
4 71.145.0.192 (71.145.0.192) 37.998 ms 41.153 ms 40.586 ms
5 12.83.39.189 (12.83.39.189) 43.315 ms 12.83.39.185 (12.83.39.185)
39.053 ms
                                                         12.83.39.189
(12.83.39.189) 43.311 ms
6 12.122.136.181 (12.122.136.181) 69.120 ms 69.564 ms 69.086 ms
7 * * *
8
  216.239.49.168 (216.239.49.168) 49.860 ms 53.125 ms 39.522 ms
9 72.14.232.33 (72.14.232.33) 35.172 ms 34.588 ms 35.129 ms
10 nuq04s18-in-f7.1e100.net (74.125.224.7) 37.639 ms 36.897 ms 32.858
ms
```

traceroute gateway

Displays the route that packets take to a network host.

traceroute [ipv4 | ipv6] host gateway address [options]

ipv4

Explicitly force IPv4 traceouting. By default, the program will try to resolve the name given, and choose the appropriate protocol automatically. If resolving a host name returns both IPv4 and IPv6 addresses, traceroute will use IPv4.

ipv6

Explicitly force IPv6 traceouting. By default, the program will try to resolve the name given, and choose the appropriate protocol automatically. If resolving a host name returns both IPv4 and IPv6 addresses, traceroute will use IPv6.

host

A host that is the destination for the trace. The host is specified as a name (if DNS is being used on the network), as an IPv4 or IPv6 address, or as a MAC address (format h:h:h:h:h:h:h).

gateway address

Routes the request through a specified gateway.

options

The following entries are options. Multiple options can be included on the same command line.

as-path

Performs AS path lookups in routing registries and print results directly after the corresponding addresses.

bypass-routing

Bypasses the normal routing tables and send directly to a host on an attached network. If the host is not on a directly-attached network, an error is returned.

This option can be used to ping a local host through an interface that has no route through it.

debug-socket

Enables socket level debugging.

first-ttl value

Specifies the first time-to-live value. Defaults to 1.

icmp-echo

Uses ICMP echo for the traceroute probe.

icmp-extensions

Shows ICMP extensions (rfc4884). The general form is *CLASS/TYPE:* followed by a hexadecimal dump.

interface value

Specifies the interface that the device must use for traceroute requests.

interval value

Specifies the time in seconds between traceroute requests from the device.

max-ttl value

Specifies the maximum number of hops for the probe.

no-fragment

Does not fragment the probe packets.

num-queries number

Specifies the number of probe packets per hop. The default is 3.

port number

For UDP tracing, specifies the destination port base traceroute will use (the destination port number will be incremented by each probe). For ICMP tracing, specifies the initial icmp sequence value (incremented by each probe too). For TCP specifies just the (constant) destination port to connect.

seq-queries number

Specifies the number of sequential probe packets.

source-addr host

Specifies an alternative source host by hostname, IPv4 address, or MAC address.

tcp-syn

Uses TCP SYN for the probes.

tos value

Marks the packets with the specified Type of Service (TOS) value.

version

Displays the timestamp during ping output.

wait-time value

Specifies the time (seconds) to wait for a response from the probe. Default is 5 seconds.

Operational mode

Use this command to perform a "traceroute" operation for a network host. This operation uses the IP protocol time-to-live (TTL) field and attempts to elicit an Internet Control Message Protocol (ICMP) TIME_EXCEEDED response from each gateway along the path to a host to track the route that a set of packets follows. It attempts to trace the route an IP packet follows to an Internet host by launching User Datagram Protocol (UDP) probe packets with a small time to live, then listening for an ICMP "Time exceeded" reply from a gateway.

The following example illustrates a traceroute to google.com with the gateway set.

vyatta@vyatta#traceroute google.com gateway

traceroute icmp-echo

Displays the route that packets take to a network host.

traceroute [ipv4 | ipv6] host icmp-echo [options]

ipv4

Explicitly force IPv4 traceouting. By default, the program will try to resolve the name given, and choose the appropriate protocol automatically. If resolving a host name returns both IPv4 and IPv6 addresses, traceroute will use IPv4.

ipv6

Explicitly force IPv6 traceouting. By default, the program will try to resolve the name given, and choose the appropriate protocol automatically. If resolving a host name returns both IPv4 and IPv6 addresses, traceroute will use IPv6.

host

A host that is the destination for the trace. The host is specified as a name (if DNS is being used on the network), as an IPv4 or IPv6 address, or as a MAC address (format h:h:h:h:h:h:h:h).

icmp-echo

Uses ICMP echo for the traceroute probe.

options

The following entries are options. Multiple options can be included on the same command line.

as-path

Performs AS path lookups in routing registries and print results directly after the corresponding addresses.

bypass-routing

Bypasses the normal routing tables and send directly to a host on an attached network. If the host is not on a directly-attached network, an error is returned.

This option can be used to ping a local host through an interface that has no route through it.

debug-socket

Enables socket level debugging.

first-ttl value

Specifies the first time-to-live value. Defaults to 1.

gateway address

Routes the request through a specified gateway.

icmp-extensions

Shows ICMP extensions (rfc4884). The general form is *CLASS/TYPE:* followed by a hexadecimal dump.

interface value

Specifies the interface that the device must use for traceroute requests.

interval value

Specifies the time in seconds between traceroute requests from the device.

max-ttl value

Specifies the maximum number of hops for the probe.

no-fragment

Does not fragment the probe packets.

num-queries number

Specifies the number of probe packets per hop. The default is 3.

port number

For UDP tracing, specifies the destination port base traceroute will use (the destination port number will be incremented by each probe). For ICMP tracing, specifies the initial icmp sequence value (incremented by each probe too). For TCP specifies just the (constant) destination port to connect.

seq-queries number

Specifies the number of sequential probe packets.

source-addr host

Specifies an alternative source host by hostname, IPv4 address, or MAC address.

tcp-syn

Uses TCP SYN for the probes.

tos value

Marks the packets with the specified Type of Service (TOS) value.

version

Displays the timestamp during ping output.

wait-time value

Specifies the time (seconds) to wait for a response from the probe. Default is 5 seconds.

Operational mode

Use this command to perform a "traceroute" operation for a network host. This operation uses the IP protocol time-to-live (TTL) field and attempts to elicit an Internet Control Message Protocol (ICMP) TIME_EXCEEDED response from each gateway along the path to a host to track the route that a set of packets follows. It attempts to trace the route an IP packet follows to an Internet host by launching User Datagram Protocol (UDP) probe packets with a small time to live, then listening for an ICMP "Time exceeded" reply from a gateway.

The following example illustrates a traceroute to google.com using ICMP echo for the traceroute probe.

```
vyatta@vyatta#traceroute google.com icmp-echo
traceroute to google.com (74.125.224.9), 30 hops max, 60 byte packets
1 gateway.attlocal.net (10.0.6.1) 0.512 ms 0.510 ms 0.507 ms
2 75-25-153-214.uvs.sntcca.sbcglobal.net (75.25.153.214) 3.175 ms 3.194
ms 3.194 ms
3 76-198-128-2.lightspeed.mtvwca.sbcglobal.net (76.198.128.2) 24.351 ms
25.192 ms 25.201 ms
4 71.145.0.192 (71.145.0.192) 26.644 ms 27.905 ms 27.910 ms
  12.83.39.185 (12.83.39.185) 28.728 ms 32.328 ms 32.335 ms
5
6 12.122.136.181 (12.122.136.181) 68.186 ms 67.898 ms 67.853 ms
   * * *
7
8
  216.239.49.168 (216.239.49.168) 25.336 ms 26.631 ms 27.460 ms
9
   72.14.232.33 (72.14.232.33) 26.151 ms 26.620 ms 27.186 ms
10 nuq04s18-in-f9.1e100.net (74.125.224.9) 27.531 ms 24.783 ms 24.752
ms
```

traceroute icmp-extensions

Displays the route that packets take to a network host.

```
traceroute [ ipv4 | ipv6 ] host icmp-extensions [ options ]
```

ipv4

Explicitly force IPv4 traceouting. By default, the program will try to resolve the name given, and choose the appropriate protocol automatically. If resolving a host name returns both IPv4 and IPv6 addresses, traceroute will use IPv4.

ipv6

Explicitly force IPv6 traceouting. By default, the program will try to resolve the name given, and choose the appropriate protocol automatically. If resolving a host name returns both IPv4 and IPv6 addresses, traceroute will use IPv6.

host

A host that is the destination for the trace. The host is specified as a name (if DNS is being used on the network), as an IPv4 or IPv6 address, or as a MAC address (format h:h:h:h:h:h:h).

icmp-extensions

Shows ICMP extensions (rfc4884). The general form is *CLASS/TYPE:* followed by a hexadecimal dump.

options

The following entries are options. Multiple options can be included on the same command line.

as-path

Performs AS path lookups in routing registries and print results directly after the corresponding addresses.

bypass-routing

Bypasses the normal routing tables and send directly to a host on an attached network. If the host is not on a directly-attached network, an error is returned. This option can be used to ping a local host through an interface that has no route through it.

debug-socket

Enables socket level debugging.

first-ttl value

Specifies the first time-to-live value. Defaults to 1.

gateway address

Routes the request through a specified gateway.

icmp-echo

Uses ICMP echo for the traceroute probe.

interface value

Specifies the interface that the device must use for traceroute requests.

interval value

Specifies the time in seconds between traceroute requests from the device.

max-ttl value

Specifies the maximum number of hops for the probe.

no-fragment

Does not fragment the probe packets.

num-queries number

Specifies the number of probe packets per hop. The default is 3.

port number

For UDP tracing, specifies the destination port base traceroute will use (the destination port number will be incremented by each probe). For ICMP tracing, specifies the initial icmp sequence value (incremented by each probe too). For TCP specifies just the (constant) destination port to connect.

seq-queries number

Specifies the number of sequential probe packets.

source-addr host

Specifies an alternative source host by hostname, IPv4 address, or MAC address.

tcp-syn

Uses TCP SYN for the probes.

tos value

Marks the packets with the specified Type of Service (TOS) value.

version

Displays the timestamp during ping output.

wait-time value

Specifies the time (seconds) to wait for a response from the probe. Default is 5 seconds.

Operational mode

Use this command to perform a "traceroute" operation for a network host. This operation uses the IP protocol time-to-live (TTL) field and attempts to elicit an Internet Control Message Protocol (ICMP) TIME_EXCEEDED response from each gateway along the path to a host to track the route that a set of packets follows. It attempts to trace the route an IP packet follows to an Internet host by launching User Datagram Protocol (UDP) probe packets with a small time to live, then listening for an ICMP "Time exceeded" reply from a gateway.

The following example illustrates a traceroute to google.com showing ICMP extensions.

```
vyatta@vyatta#traceroute google.com icmp-extensions
traceroute to google.com (74.125.224.1), 30 hops max, 60 byte packets
1 gateway.attlocal.net (10.0.6.1) 0.482 ms 0.458 ms 0.452 ms
2 75-25-153-214.uvs.sntcca.sbcqlobal.net (75.25.153.214) 13.714 ms
13.703 ms 13.673 ms
3 76-198-128-2.lightspeed.mtvwca.sbcglobal.net (76.198.128.2) 35.518 ms
34.284 ms 35.492 ms
4 71.145.0.192 (71.145.0.192) 34.201 ms 35.828 ms 35.385 ms
5 12.83.39.189 (12.83.39.189) 39.513 ms 12.83.39.185 (12.83.39.185)
39.510 ms 12.83.39.189 (12.83.39.189) 44.236 ms
6 12.122.136.181 (12.122.136.181) 47.009 ms 46.105 ms 46.052 ms
  * * *
7
8 216.239.49.168 (216.239.49.168) 31.725 ms 28.023 ms 28.467 ms
9 72.14.232.33 (72.14.232.33) 32.480 ms 31.081 ms 31.791 ms
10 nuq04s18-in-f1.le100.net (74.125.224.1) 32.791 ms 26.412 ms 25.713
ms
```

traceroute interface

Displays the route that packets take to a network host.

```
traceroute [ ipv4 | ipv6 ] host interface value [ options ]
```

ipv4

Explicitly force IPv4 traceouting. By default, the program will try to resolve the name given, and choose the appropriate protocol automatically. If resolving a host name returns both IPv4 and IPv6 addresses, traceroute will use IPv4.

ipv6

Explicitly force IPv6 traceouting. By default, the program will try to resolve the name given, and choose the appropriate protocol automatically. If resolving a host name returns both IPv4 and IPv6 addresses, traceroute will use IPv6.

host

A host that is the destination for the trace. The host is specified as a name (if DNS is being used on the network), as an IPv4 or IPv6 address, or as a MAC address (format h:h:h:h:h:h:h).

interface value

Specifies the interface that the device must use for traceroute requests.

options

The following entries are options. Multiple options can be included on the same command line.

as-path

Performs AS path lookups in routing registries and print results directly after the corresponding addresses.

bypass-routing

Bypasses the normal routing tables and send directly to a host on an attached network. If the host is not on a directly-attached network, an error is returned. This option can be used to ping a local host through an interface that has no route through it.

debug-socket

Enables socket level debugging.

first-ttl value

Specifies the first time-to-live value. Defaults to 1.

gateway address

Routes the request through a specified gateway.

icmp-echo

Uses ICMP echo for the traceroute probe.

icmp-extensions

Shows ICMP extensions (rfc4884). The general form is *CLASS/TYPE:* followed by a hexadecimal dump.

interval value

Specifies the time in seconds between traceroute requests from the device.

max-ttl value

Specifies the maximum number of hops for the probe.

no-fragment

Does not fragment the probe packets.

num-queries number

Specifies the number of probe packets per hop. The default is 3.

port number

For UDP tracing, specifies the destination port base traceroute will use (the destination port number will be incremented by each probe). For ICMP tracing, specifies the initial icmp sequence value (incremented by each probe too). For TCP specifies just the (constant) destination port to connect.

seq-queries number

Specifies the number of sequential probe packets.

source-addr host

Specifies an alternative source host by hostname, IPv4 address, or MAC address.

tcp-syn

Uses TCP SYN for the probes.

tos value

Marks the packets with the specified Type of Service (TOS) value.

version

Displays the timestamp during ping output.

wait-time value

Specifies the time (seconds) to wait for a response from the probe. Default is 5 seconds.

Operational mode

Use this command to perform a "traceroute" operation for a network host. This operation uses the IP protocol time-to-live (TTL) field and attempts to elicit an Internet Control Message Protocol (ICMP) TIME_EXCEEDED response from each gateway along the path to a host to track the route that a set of packets follows. It attempts to trace the route an IP packet follows to an Internet host by launching User Datagram Protocol (UDP) probe packets with a small time to live, then listening for an ICMP "Time exceeded" reply from a gateway.

The following example illustrates a traceroute to google.com through interface dp0p1s2.

vyatta@vyatta#traceroute google.com interface dp0p1s2

traceroute max-ttl

Displays the route that packets take to a network host.

traceroute [ipv4 | ipv6] host max-ttl value [options]

ipv4

Explicitly force IPv4 traceouting. By default, the program will try to resolve the name given, and choose the appropriate protocol automatically. If resolving a host name returns both IPv4 and IPv6 addresses, traceroute will use IPv4.

ipv6

Explicitly force IPv6 traceouting. By default, the program will try to resolve the name given, and choose the appropriate protocol automatically. If resolving a host name returns both IPv4 and IPv6 addresses, traceroute will use IPv6.

host

A host that is the destination for the trace. The host is specified as a name (if DNS is being used on the network), as an IPv4 or IPv6 address, or as a MAC address (format h:h:h:h:h:h:h).

max-ttl value

Specifies the maximum number of hops for the probe.

options

The following entries are options. Multiple options can be included on the same command line.

as-path

Performs AS path lookups in routing registries and print results directly after the corresponding addresses.

bypass-routing

Bypasses the normal routing tables and send directly to a host on an attached network. If the host is not on a directly-attached network, an error is returned. This option can be used to ping a local host through an interface that has no route through it.

debug-socket

Enables socket level debugging.

first-ttl value

Specifies the first time-to-live value. Defaults to 1.

gateway address

Routes the request through a specified gateway.

icmp-echo

Uses ICMP echo for the traceroute probe.

icmp-extensions

Shows ICMP extensions (rfc4884). The general form is *CLASS/TYPE:* followed by a hexadecimal dump.

interface value

Specifies the interface that the device must use for traceroute requests.

interval value

Specifies the time in seconds between traceroute requests from the device.

no-fragment

Does not fragment the probe packets.

num-queries number

Specifies the number of probe packets per hop. The default is 3.

port number

For UDP tracing, specifies the destination port base traceroute will use (the destination port number will be incremented by each probe). For ICMP tracing, specifies the initial icmp sequence value (incremented by each probe too). For TCP specifies just the (constant) destination port to connect.

seq-queries number

Specifies the number of sequential probe packets.

source-addr host

Specifies an alternative source host by hostname, IPv4 address, or MAC address.

tcp-syn

Uses TCP SYN for the probes.

tos value

Marks the packets with the specified Type of Service (TOS) value.

version

Displays the timestamp during ping output.

wait-time value

Specifies the time (seconds) to wait for a response from the probe. Default is 5 seconds.

Operational mode

Use this command to perform a "traceroute" operation for a network host. This operation uses the IP protocol time-to-live (TTL) field and attempts to elicit an Internet Control Message Protocol (ICMP) TIME_EXCEEDED response from each gateway along the path to a host to track the route that a set of packets follows. It attempts to trace the route an IP packet follows to an Internet host by launching User Datagram Protocol (UDP) probe packets with a small time to live, then listening for an ICMP "Time exceeded" reply from a gateway.

The following example illustrates a traceroute to google.com with a maximum of 4 hops.

vyatta@vyatta#traceroute google.com max-ttl 4 traceroute to google.com (74.125.224.8), 4 hops max, 60 byte packets 1 gateway.attlocal.net (10.0.6.1) 0.362 ms 0.333 ms 0.340 ms 2 75-25-153-214.uvs.sntcca.sbcglobal.net (75.25.153.214) 9.559 ms 9.553 ms 9.529 ms 3 76-198-128-2.lightspeed.mtvwca.sbcglobal.net (76.198.128.2) 30.061 ms 31.737 ms 31.773 ms 4 71.145.0.192 (71.145.0.192) 31.776 ms 31.763 ms 31.758 ms

traceroute interval

Displays the route that packets take to a network host.

traceroute [ipv4 | ipv6] host interval value [options]

ipv4

Explicitly force IPv4 traceouting. By default, the program will try to resolve the name given, and choose the appropriate protocol automatically. If resolving a host name returns both IPv4 and IPv6 addresses, traceroute will use IPv4.

ipv6

Explicitly force IPv6 traceouting. By default, the program will try to resolve the name given, and choose the appropriate protocol automatically. If resolving a host name returns both IPv4 and IPv6 addresses, traceroute will use IPv6.

host

A host that is the destination for the trace. The host is specified as a name (if DNS is being used on the network), as an IPv4 or IPv6 address, or as a MAC address (format h:h:h:h:h:h:h).

interval value

Specifies the time in seconds between traceroute requests from the device.

options

The following entries are options. Multiple options can be included on the same command line.

as-path

Performs AS path lookups in routing registries and print results directly after the corresponding addresses.

bypass-routing

Bypasses the normal routing tables and send directly to a host on an attached network. If the host is not on a directly-attached network, an error is returned. This option can be used to ping a local host through an interface that has no route through it.

debug-socket

Enables socket level debugging.

first-ttl value

Specifies the first time-to-live value. Defaults to 1.

gateway address

Routes the request through a specified gateway.

icmp-echo

Uses ICMP echo for the traceroute probe.

icmp-extensions

Shows ICMP extensions (rfc4884). The general form is *CLASS/TYPE:* followed by a hexadecimal dump.

interface value

Specifies the interface that the device must use for traceroute requests.

max-ttl value

Specifies the maximum number of hops for the probe.

no-fragment

Does not fragment the probe packets.

num-queries number

Specifies the number of probe packets per hop. The default is 3.

port number

For UDP tracing, specifies the destination port base traceroute will use (the destination port number will be incremented by each probe). For ICMP tracing, specifies the initial icmp sequence value (incremented by each probe too). For TCP specifies just the (constant) destination port to connect.

seq-queries number

Specifies the number of sequential probe packets.

source-addr host

Specifies an alternative source host by hostname, IPv4 address, or MAC address.

tcp-syn

Uses TCP SYN for the probes.

tos value

Marks the packets with the specified Type of Service (TOS) value.

version

Displays the timestamp during ping output.

wait-time value

Specifies the time (seconds) to wait for a response from the probe. Default is 5 seconds.

Operational mode

Use this command to perform a "traceroute" operation for a network host. This operation uses the IP protocol time-to-live (TTL) field and attempts to elicit an Internet Control Message Protocol (ICMP) TIME_EXCEEDED response from each gateway along the path to a host to track the route that a set of packets follows. It attempts to trace the route an IP packet follows to an Internet host by launching User Datagram Protocol (UDP) probe packets with a small time to live, then listening for an ICMP "Time exceeded" reply from a gateway.

The following example illustrates a traceroute to google.com with 3 seconds between traceroute requests.

vyatta@vyatta#traceroute google.com interval 3

traceroute max-ttl

Displays the route that packets take to a network host.

traceroute [ipv4 | ipv6] host max-ttl value [options]

ipv4

Explicitly force IPv4 traceouting. By default, the program will try to resolve the name given, and choose the appropriate protocol automatically. If resolving a host name returns both IPv4 and IPv6 addresses, traceroute will use IPv4.

ipv6

Explicitly force IPv6 traceouting. By default, the program will try to resolve the name given, and choose the appropriate protocol automatically. If resolving a host name returns both IPv4 and IPv6 addresses, traceroute will use IPv6.

host

A host that is the destination for the trace. The host is specified as a name (if DNS is being used on the network), as an IPv4 or IPv6 address, or as a MAC address (format h:h:h:h:h:h:h).

max-ttl value

Specifies the maximum number of hops for the probe.

options

The following entries are options. Multiple options can be included on the same command line.

as-path

Performs AS path lookups in routing registries and print results directly after the corresponding addresses.

bypass-routing

Bypasses the normal routing tables and send directly to a host on an attached network. If the host is not on a directly-attached network, an error is returned. This option can be used to ping a local host through an interface that has no route through it.

debug-socket

Enables socket level debugging.

first-ttl value

Specifies the first time-to-live value. Defaults to 1.

gateway address

Routes the request through a specified gateway.

icmp-echo

Uses ICMP echo for the traceroute probe.

icmp-extensions

Shows ICMP extensions (rfc4884). The general form is *CLASS/TYPE:* followed by a hexadecimal dump.

interface value

Specifies the interface that the device must use for traceroute requests.

interval value

Specifies the time in seconds between traceroute requests from the device.

no-fragment

Does not fragment the probe packets.

num-queries number

Specifies the number of probe packets per hop. The default is 3.

port number

For UDP tracing, specifies the destination port base traceroute will use (the destination port number will be incremented by each probe). For ICMP tracing, specifies the initial icmp sequence value (incremented by each probe too). For TCP specifies just the (constant) destination port to connect.

seq-queries number

Specifies the number of sequential probe packets.

source-addr host

Specifies an alternative source host by hostname, IPv4 address, or MAC address.

tcp-syn

Uses TCP SYN for the probes.

tos value

Marks the packets with the specified Type of Service (TOS) value.

version

Displays the timestamp during ping output.

wait-time value

Specifies the time (seconds) to wait for a response from the probe. Default is 5 seconds.

Operational mode

Use this command to perform a "traceroute" operation for a network host. This operation uses the IP protocol time-to-live (TTL) field and attempts to elicit an Internet Control Message Protocol (ICMP) TIME_EXCEEDED response from each gateway along the path to a host to track the route that a set of packets follows. It attempts to trace the route an IP packet follows to an Internet host by launching User Datagram Protocol (UDP) probe packets with a small time to live, then listening for an ICMP "Time exceeded" reply from a gateway.

The following example illustrates a traceroute to google.com with a maximum of 4 hops.

```
vyatta@vyatta#traceroute google.com max-ttl 4
traceroute to google.com (74.125.224.8), 4 hops max, 60 byte packets
1 gateway.attlocal.net (10.0.6.1) 0.362 ms 0.333 ms 0.340 ms
2 75-25-153-214.uvs.sntcca.sbcglobal.net (75.25.153.214) 9.559 ms 9.553
ms 9.529 ms
```

```
3 76-198-128-2.lightspeed.mtvwca.sbcglobal.net (76.198.128.2) 30.061 ms
31.737 ms 31.773 ms
4 71.145.0.192 (71.145.0.192) 31.776 ms 31.763 ms 31.758 ms
```

traceroute no-fragment

Displays the route that packets take to a network host.

traceroute [ipv4 | ipv6] host no-fragment [options]

ipv4

Explicitly force IPv4 traceouting. By default, the program will try to resolve the name given, and choose the appropriate protocol automatically. If resolving a host name returns both IPv4 and IPv6 addresses, traceroute will use IPv4.

ipv6

Explicitly force IPv6 traceouting. By default, the program will try to resolve the name given, and choose the appropriate protocol automatically. If resolving a host name returns both IPv4 and IPv6 addresses, traceroute will use IPv6.

host

A host that is the destination for the trace. The host is specified as a name (if DNS is being used on the network), as an IPv4 or IPv6 address, or as a MAC address (format h:h:h:h:h:h:h).

no-fragment

Does not fragment the probe packets.

options

The following entries are options. Multiple options can be included on the same command line.

as-path

Performs AS path lookups in routing registries and print results directly after the corresponding addresses.

bypass-routing

Bypasses the normal routing tables and send directly to a host on an attached network. If the host is not on a directly-attached network, an error is returned. This option can be used to ping a local host through an interface that has no route through it.

debug-socket

Enables socket level debugging.

first-ttl value

Specifies the first time-to-live value. Defaults to 1.

gateway address

Routes the request through a specified gateway.

icmp-echo

Uses ICMP echo for the traceroute probe.

icmp-extensions

Shows ICMP extensions (rfc4884). The general form is *CLASS/TYPE:* followed by a hexadecimal dump.

interface value

Specifies the interface that the device must use for traceroute requests.

interval value

Specifies the time in seconds between traceroute requests from the device.

max-ttl value

Specifies the maximum number of hops for the probe.

num-queries number

Specifies the number of probe packets per hop. The default is 3.

port number

For UDP tracing, specifies the destination port base traceroute will use (the destination port number will be incremented by each probe). For ICMP tracing, specifies the initial icmp sequence value (incremented by each probe too). For TCP specifies just the (constant) destination port to connect.

seq-queries number

Specifies the number of sequential probe packets.

source-addr host

Specifies an alternative source host by hostname, IPv4 address, or MAC address.

tcp-syn

Uses TCP SYN for the probes.

tos value

Marks the packets with the specified Type of Service (TOS) value.

version

Displays the timestamp during ping output.

wait-time value

Specifies the time (seconds) to wait for a response from the probe. Default is 5 seconds.

Operational mode

Use this command to perform a "traceroute" operation for a network host. This operation uses the IP protocol time-to-live (TTL) field and attempts to elicit an Internet Control Message Protocol (ICMP) TIME_EXCEEDED response from each gateway along the path to a host to track the route that a set of packets follows. It attempts to trace the route an IP packet follows to an Internet host by launching User Datagram Protocol (UDP) probe packets with a small time to live, then listening for an ICMP "Time exceeded" reply from a gateway.

The following example illustrates a traceroute to google.com with no fragmented probe packets.

```
vyatta@vyatta#traceroute google.com no-fragment
traceroute to google.com (74.125.224.0), 30 hops max, 60 byte packets
1 pipsqueak.attlocal.net (10.0.6.1) 0.394 ms 0.564 ms 0.356 ms
2 75-25-153-214.uvs.sntcca.sbcglobal.net (75.25.153.214) 9.799 ms 9.771
ms 9.748 ms
 76-198-128-2.lightspeed.mtvwca.sbcglobal.net (76.198.128.2) 31.504 ms
3
30.107 ms 36.088 ms
4 71.145.0.192 (71.145.0.192) 36.139 ms 31.473 ms 31.441 ms
5 12.83.39.189 (12.83.39.189) 38.391 ms 37.441 ms 12.83.39.185
(12.83.39.185) 36.589 ms
6 12.122.136.181 (12.122.136.181) 83.786 ms 82.908 ms 82.880 ms
7 * * *
8 216.239.49.168 (216.239.49.168) 27.049 ms 36.183 ms 33.859 ms
9 72.14.232.33 (72.14.232.33) 33.652 ms 33.064 ms 33.645 ms
10 nuq04s18-in-f0.1e100.net (74.125.224.0) 36.182 ms 36.165 ms 36.142
ms
```

traceroute num-queries

Displays the route that packets take to a network host.

traceroute [ipv4 | ipv6] host num-queries number [options]

ipv4

Explicitly force IPv4 traceouting. By default, the program will try to resolve the name given, and choose the appropriate protocol automatically. If resolving a host name returns both IPv4 and IPv6 addresses, traceroute will use IPv4.

ipv6

Explicitly force IPv6 traceouting. By default, the program will try to resolve the name given, and choose the appropriate protocol automatically. If resolving a host name returns both IPv4 and IPv6 addresses, traceroute will use IPv6.

host

A host that is the destination for the trace. The host is specified as a name (if DNS is being used on the network), as an IPv4 or IPv6 address, or as a MAC address (format h:h:h:h:h:h:h).

num-queries number

Specifies the number of probe packets per hop. The default is 3.

options

The following entries are options. Multiple options can be included on the same command line.

as-path

Performs AS path lookups in routing registries and print results directly after the corresponding addresses.

bypass-routing

Bypasses the normal routing tables and send directly to a host on an attached network. If the host is not on a directly-attached network, an error is returned. This option can be used to ping a local host through an interface that has no route through it.

debug-socket

Enables socket level debugging.

first-ttl value

Specifies the first time-to-live value. Defaults to 1.

gateway address

Routes the request through a specified gateway.

icmp-echo

Uses ICMP echo for the traceroute probe.

icmp-extensions

Shows ICMP extensions (rfc4884). The general form is *CLASS/TYPE:* followed by a hexadecimal dump.

interface value

Specifies the interface that the device must use for traceroute requests.

interval value

Specifies the time in seconds between traceroute requests from the device.

max-ttl value

Specifies the maximum number of hops for the probe.

no-fragment

Does not fragment the probe packets.

port number

For UDP tracing, specifies the destination port base traceroute will use (the destination port number will be incremented by each probe). For ICMP tracing, specifies the initial icmp sequence value (incremented by each probe too). For TCP specifies just the (constant) destination port to connect.

seq-queries number

Specifies the number of sequential probe packets.

source-addr host

Specifies an alternative source host by hostname, IPv4 address, or MAC address.

tcp-syn

Uses TCP SYN for the probes.

tos value

Marks the packets with the specified Type of Service (TOS) value.

version

Displays the timestamp during ping output.

wait-time value

Specifies the time (seconds) to wait for a response from the probe. Default is 5 seconds.

Operational mode

Use this command to perform a "traceroute" operation for a network host. This operation uses the IP protocol time-to-live (TTL) field and attempts to elicit an Internet Control Message Protocol (ICMP) TIME_EXCEEDED response from each gateway along the path to a host to track the route that a set of packets follows. It attempts to trace the route an IP packet follows to an Internet host by launching User Datagram Protocol (UDP) probe packets with a small time to live, then listening for an ICMP "Time exceeded" reply from a gateway.

The following example illustrates a traceroute to google.com with 4 probes per hop.

```
vyatta@vyatta#traceroute google.com num-queries 2
traceroute to google.com (74.125.224.9), 30 hops max, 60 byte packets
1 gateway.attlocal.net (10.0.6.1) 0.411 ms 0.387 ms
2 75-25-153-214.uvs.sntcca.sbcglobal.net (75.25.153.214) 14.167 ms
14.145 ms
3 76-198-128-2.lightspeed.mtvwca.sbcglobal.net (76.198.128.2) 36.338 ms
35.080 ms
4 71.145.0.192 (71.145.0.192) 36.862 ms 36.338 ms
5 12.83.39.189 (12.83.39.189) 49.387 ms 12.83.39.185 (12.83.39.185)
49.374 ms
6 12.122.136.181 (12.122.136.181) 41.428 ms 41.419 ms
7 * *
8 216.239.49.168 (216.239.49.168) 41.356 ms 49.198 ms
9 72.14.232.33 (72.14.232.33) 39.738 ms 39.720 ms
10 nuq04s18-in-f9.1e100.net (74.125.224.9) 34.504 ms 34.474 ms
```

traceroute port

Displays the route that packets take to a network host.

traceroute [ipv4 | ipv6] host port number [options]

ipv4

Explicitly force IPv4 traceouting. By default, the program will try to resolve the name given, and choose the appropriate protocol automatically. If resolving a host name returns both IPv4 and IPv6 addresses, traceroute will use IPv4.

ipv6

Explicitly force IPv6 traceouting. By default, the program will try to resolve the name given, and choose the appropriate protocol automatically. If resolving a host name returns both IPv4 and IPv6 addresses, traceroute will use IPv6.

host

A host that is the destination for the trace. The host is specified as a name (if DNS is being used on the network), as an IPv4 or IPv6 address, or as a MAC address (format h:h:h:h:h:h:h:h).

port number

For UDP tracing, specifies the destination port base traceroute will use (the destination port number will be incremented by each probe). For ICMP tracing, specifies the initial icmp sequence value (incremented by each probe too). For TCP specifies just the (constant) destination port to connect.

options

The following entries are options. Multiple options can be included on the same command line.

as-path

Performs AS path lookups in routing registries and print results directly after the corresponding addresses.

bypass-routing

Bypasses the normal routing tables and send directly to a host on an attached network. If the host is not on a directly-attached network, an error is returned. This option can be used to ping a local host through an interface that has no route through it.

debug-socket

Enables socket level debugging.

first-ttl value

Specifies the first time-to-live value. Defaults to 1.

gateway address

Routes the request through a specified gateway.

icmp-echo

Uses ICMP echo for the traceroute probe.

icmp-extensions

Shows ICMP extensions (rfc4884). The general form is *CLASS/TYPE:* followed by a hexadecimal dump.

interface value

Specifies the interface that the device must use for traceroute requests.

interval value

Specifies the time in seconds between traceroute requests from the device.

max-ttl value

Specifies the maximum number of hops for the probe.

no-fragment

Does not fragment the probe packets.

num-queries number

Specifies the number of probe packets per hop. The default is 3.

seq-queries number

Specifies the number of sequential probe packets.

source-addr host

Specifies an alternative source host by hostname, IPv4 address, or MAC address.

tcp-syn

Uses TCP SYN for the probes.

tos value

Marks the packets with the specified Type of Service (TOS) value.

version

Displays the timestamp during ping output.

wait-time value

Specifies the time (seconds) to wait for a response from the probe. Default is 5 seconds.

Operational mode

Use this command to perform a "traceroute" operation for a network host. This operation uses the IP protocol time-to-live (TTL) field and attempts to elicit an Internet Control Message Protocol (ICMP) TIME_EXCEEDED response from each gateway along the path to a host to track the route that a set of packets follows. It attempts to trace the route an IP packet follows to an Internet host by launching User Datagram Protocol (UDP) probe packets with a small time to live, then listening for an ICMP "Time exceeded" reply from a gateway.

The following example illustrates a traceroute to google.com through port 80.

```
vyatta@vyatta#traceroute google.com port 80
traceroute to google.com (74.125.224.1), 30 hops max, 60 byte packets
1 gateway.attlocal.net (10.0.6.1) 0.383 ms 0.337 ms 0.327 ms
2 75-25-153-214.uvs.sntcca.sbcqlobal.net (75.25.153.214) 1.689 ms 1.582
ms 1.461 ms
3 76-198-128-2.lightspeed.mtvwca.sbcglobal.net (76.198.128.2) 22.674 ms
21.656 ms 21.901 ms
4 71.145.0.192 (71.145.0.192) 26.552 ms 21.609 ms 21.732 ms
5 12.83.39.185 (12.83.39.185) 23.492 ms 12.83.39.189 (12.83.39.189)
24.755 ms 12.83.39.185 (12.83.39.185) 23.333 ms
6 12.122.136.181 (12.122.136.181) 23.033 ms 22.736 ms 23.119 ms
7
  * * *
8 216.239.49.168 (216.239.49.168) 25.157 ms 24.775 ms 24.790 ms
9 72.14.232.33 (72.14.232.33) 25.859 ms 25.051 ms 25.207 ms
10 nuq04s18-in-f1.le100.net (74.125.224.1) 25.102 ms 24.958 ms 25.077
ms
```

traceroute seq-queries

Displays the route that packets take to a network host.

traceroute [ipv4 | ipv6] host seq-queries number [options]

ipv4

Explicitly force IPv4 traceouting. By default, the program will try to resolve the name given, and choose the appropriate protocol automatically. If resolving a host name returns both IPv4 and IPv6 addresses, traceroute will use IPv4.

ipv6

Explicitly force IPv6 traceouting. By default, the program will try to resolve the name given, and choose the appropriate protocol automatically. If resolving a host name returns both IPv4 and IPv6 addresses, traceroute will use IPv6.

host

A host that is the destination for the trace. The host is specified as a name (if DNS is being used on the network), as an IPv4 or IPv6 address, or as a MAC address (format h:h:h:h:h:h:h).

seq-queries number

Specifies the number of sequential probe packets.

options

The following entries are options. Multiple options can be included on the same command line.

as-path

Performs AS path lookups in routing registries and print results directly after the corresponding addresses.

bypass-routing

Bypasses the normal routing tables and send directly to a host on an attached network. If the host is not on a directly-attached network, an error is returned. This option can be used to ping a local host through an interface that has no route through it.

debug-socket

Enables socket level debugging.

first-ttl value

Specifies the first time-to-live value. Defaults to 1.

gateway address

Routes the request through a specified gateway.

icmp-echo

Uses ICMP echo for the traceroute probe.

icmp-extensions

Shows ICMP extensions (rfc4884). The general form is *CLASS/TYPE:* followed by a hexadecimal dump.

interface value

Specifies the interface that the device must use for traceroute requests.

interval value

Specifies the time in seconds between traceroute requests from the device.

max-ttl value

Specifies the maximum number of hops for the probe.

no-fragment

Does not fragment the probe packets.

num-queries number

Specifies the number of probe packets per hop. The default is 3.

port number

For UDP tracing, specifies the destination port base traceroute will use (the destination port number will be incremented by each probe). For ICMP tracing, specifies the initial icmp sequence value (incremented by each probe too). For TCP specifies just the (constant) destination port to connect.

source-addr host

Specifies an alternative source host by hostname, IPv4 address, or MAC address.

tcp-syn

Uses TCP SYN for the probes.

tos value

Marks the packets with the specified Type of Service (TOS) value.

version

Displays the timestamp during ping output.

wait-time value

Specifies the time (seconds) to wait for a response from the probe. Default is 5 seconds.

Operational mode

Use this command to perform a "traceroute" operation for a network host. This operation uses the IP protocol time-to-live (TTL) field and attempts to elicit an Internet Control Message Protocol (ICMP) TIME_EXCEEDED response from each gateway along the path to a host to track the route that a set of packets follows. It attempts to trace the route an IP packet follows to an Internet host by launching User Datagram Protocol (UDP) probe packets with a small time to live, then listening for an ICMP "Time exceeded" reply from a gateway.

The following example illustrates a traceroute to google.com with 2 sequential probe packets.

```
vyatta@vyatta#traceroute google.com seq-queries 2
traceroute to google.com (74.125.224.0), 30 hops max, 60 byte packets
1 pipsqueak.attlocal.net (10.0.6.1) 0.441 ms 0.416 ms 0.357 ms
2 75-25-153-214.uvs.sntcca.sbcglobal.net (75.25.153.214) 1.762 ms 2.295
ms 1.497 ms
3 76-198-128-2.lightspeed.mtvwca.sbcglobal.net (76.198.128.2) 23.357 ms
22.565 ms 22.219 ms
4 71.145.0.192 (71.145.0.192) 23.964 ms 22.780 ms 21.566 ms
```

5 12.83.39.185 (12.83.39.185) 27.362 ms 12.83.39.189 (12.83.39.189) 26.326 ms 12.83.39.185 (12.83.39.185) 25.436 ms 6 12.122.136.181 (12.122.136.181) 113.918 ms 88.183 ms 49.824 ms 7 * * * 8 216.239.49.168 (216.239.49.168) 26.184 ms 24.964 ms 24.673 ms 9 72.14.232.33 (72.14.232.33) 25.629 ms 25.079 ms 25.069 ms 10 nuq04s18-in-f0.1e100.net (74.125.224.0) 25.164 ms 25.286 ms 24.878 ms

traceroute source-addr

Displays the route that packets take to a network host.

```
traceroute [ ipv4 | ipv6 ] host source-addr host [ options ]
```

ipv4

Explicitly force IPv4 traceouting. By default, the program will try to resolve the name given, and choose the appropriate protocol automatically. If resolving a host name returns both IPv4 and IPv6 addresses, traceroute will use IPv4.

ipv6

Explicitly force IPv6 traceouting. By default, the program will try to resolve the name given, and choose the appropriate protocol automatically. If resolving a host name returns both IPv4 and IPv6 addresses, traceroute will use IPv6.

host

A host that is the destination for the trace. The host is specified as a name (if DNS is being used on the network), as an IPv4 or IPv6 address, or as a MAC address (format h:h:h:h:h:h:h:h).

source-addr host

Specifies an alternative source host by hostname, IPv4 address, or MAC address.

options

The following entries are options. Multiple options can be included on the same command line.

as-path

Performs AS path lookups in routing registries and print results directly after the corresponding addresses.

bypass-routing

Bypasses the normal routing tables and send directly to a host on an attached network. If the host is not on a directly-attached network, an error is returned. This option can be used to ping a local host through an interface that has no route through it.

debug-socket

Enables socket level debugging.

first-ttl value

Specifies the first time-to-live value. Defaults to 1.

gateway address

Routes the request through a specified gateway.

icmp-echo

Uses ICMP echo for the traceroute probe.

icmp-extensions

Shows ICMP extensions (rfc4884). The general form is *CLASS/TYPE:* followed by a hexadecimal dump.

interface value

Specifies the interface that the device must use for traceroute requests.

interval value

Specifies the time in seconds between traceroute requests from the device.

max-ttl value

Specifies the maximum number of hops for the probe.

no-fragment

Does not fragment the probe packets.

num-queries number

Specifies the number of probe packets per hop. The default is 3.

port number

For UDP tracing, specifies the destination port base traceroute will use (the destination port number will be incremented by each probe). For ICMP tracing, specifies the initial icmp sequence value (incremented by each probe too). For TCP specifies just the (constant) destination port to connect.

seq-queries number

Specifies the number of sequential probe packets.

tcp-syn

Uses TCP SYN for the probes.

tos value

Marks the packets with the specified Type of Service (TOS) value.

version

Displays the timestamp during ping output.

wait-time value

Specifies the time (seconds) to wait for a response from the probe. Default is 5 seconds.

Operational mode

Use this command to perform a "traceroute" operation for a network host. This operation uses the IP protocol time-to-live (TTL) field and attempts to elicit an Internet Control Message Protocol (ICMP) TIME_EXCEEDED response from each gateway along the path to a host to track the route that a set of packets follows. It attempts to trace the route an IP packet follows to an Internet host by launching User Datagram Protocol (UDP) probe

packets with a small time to live, then listening for an ICMP "Time exceeded" reply from a gateway.

The following example illustrates a traceroute to google.com with source address *client1.attlocal.net*.

```
vyatta@vyatta#traceroute google.com source-addr client.attlocal.net
```

traceroute tcp-syn

Displays the route that packets take to a network host.

```
traceroute [ ipv4 | ipv6 ] host tcp-syn [ options ]
```

ipv4

Explicitly force IPv4 traceouting. By default, the program will try to resolve the name given, and choose the appropriate protocol automatically. If resolving a host name returns both IPv4 and IPv6 addresses, traceroute will use IPv4.

ipv6

Explicitly force IPv6 traceouting. By default, the program will try to resolve the name given, and choose the appropriate protocol automatically. If resolving a host name returns both IPv4 and IPv6 addresses, traceroute will use IPv6.

host

A host that is the destination for the trace. The host is specified as a name (if DNS is being used on the network), as an IPv4 or IPv6 address, or as a MAC address (format h:h:h:h:h:h:h).

tcp-syn

Uses TCP SYN for the probes.

options

The following entries are options. Multiple options can be included on the same command line.

as-path

Performs AS path lookups in routing registries and print results directly after the corresponding addresses.

bypass-routing

Bypasses the normal routing tables and send directly to a host on an attached network. If the host is not on a directly-attached network, an error is returned. This option can be used to ping a local host through an interface that has no route through it.

debug-socket

Enables socket level debugging.

first-ttl value

Specifies the first time-to-live value. Defaults to 1.

gateway address

Routes the request through a specified gateway.

icmp-echo

Uses ICMP echo for the traceroute probe.

icmp-extensions

Shows ICMP extensions (rfc4884). The general form is *CLASS/TYPE:* followed by a hexadecimal dump.

interface value

Specifies the interface that the device must use for traceroute requests.

interval value

Specifies the time in seconds between traceroute requests from the device.

max-ttl value

Specifies the maximum number of hops for the probe.

no-fragment

Does not fragment the probe packets.

num-queries number

Specifies the number of probe packets per hop. The default is 3.

port number

For UDP tracing, specifies the destination port base traceroute will use (the destination port number will be incremented by each probe). For ICMP tracing, specifies the initial icmp sequence value (incremented by each probe too). For TCP specifies just the (constant) destination port to connect.

seq-queries number

Specifies the number of sequential probe packets.

source-addr host

Specifies an alternative source host by hostname, IPv4 address, or MAC address.

tos value

Marks the packets with the specified Type of Service (TOS) value.

version

Displays the timestamp during ping output.

wait-time value

Specifies the time (seconds) to wait for a response from the probe. Default is 5 seconds.

Operational mode

Use this command to perform a "traceroute" operation for a network host. This operation uses the IP protocol time-to-live (TTL) field and attempts to elicit an Internet Control Message Protocol (ICMP) TIME_EXCEEDED response from each gateway along the path to a host to track the route that a set of packets follows. It attempts to trace the route an

IP packet follows to an Internet host by launching User Datagram Protocol (UDP) probe packets with a small time to live, then listening for an ICMP "Time exceeded" reply from a gateway.

The following example illustrates a traceroute to google.com using tcp-syn for probes.

```
vyatta@vyatta#traceroute google.com tcp-syn
traceroute to google.com (74.125.224.6), 30 hops max, 60 byte packets
1 gateway.attlocal.net (10.0.6.1) 0.389 ms 0.341 ms 0.316 ms
2 75-25-153-214.uvs.sntcca.sbcglobal.net (75.25.153.214) 12.784 ms
12.767 ms 12.771 ms
3 76-198-128-2.lightspeed.mtvwca.sbcglobal.net (76.198.128.2) 35.539 ms
35.529 ms 35.517 ms
  71.145.0.192 (71.145.0.192) 35.512 ms 35.503 ms 33.653 ms
4
 12.83.39.189 (12.83.39.189) 38.888 ms 36.371 ms 37.952 ms
5
 12.122.136.181 (12.122.136.181) 63.947 ms 63.087 ms 63.045 ms
б
7
  * * *
8 216.239.49.168 (216.239.49.168) 28.752 ms 29.378 ms 29.368 ms
9
  * * *
10 nuq04s18-in-f6.le100.net (74.125.224.6) 29.669 ms 27.836 ms 29.669
ms
```

traceroute tos

Displays the route that packets take to a network host.

traceroute [ipv4 | ipv6] host tos value [options]

ipv4

Explicitly force IPv4 traceouting. By default, the program will try to resolve the name given, and choose the appropriate protocol automatically. If resolving a host name returns both IPv4 and IPv6 addresses, traceroute will use IPv4.

ipv6

Explicitly force IPv6 traceouting. By default, the program will try to resolve the name given, and choose the appropriate protocol automatically. If resolving a host name returns both IPv4 and IPv6 addresses, traceroute will use IPv6.

host

A host that is the destination for the trace. The host is specified as a name (if DNS is being used on the network), as an IPv4 or IPv6 address, or as a MAC address (format h:h:h:h:h:h:h).

tos value

Marks the packets with the specified Type of Service (TOS) value.

options

The following entries are options. Multiple options can be included on the same command line.

as-path

Performs AS path lookups in routing registries and print results directly after the corresponding addresses.

bypass-routing

Bypasses the normal routing tables and send directly to a host on an attached network. If the host is not on a directly-attached network, an error is returned. This option can be used to ping a local host through an interface that has no route through it.

debug-socket

Enables socket level debugging.

first-ttl value

Specifies the first time-to-live value. Defaults to 1.

gateway address

Routes the request through a specified gateway.

icmp-echo

Uses ICMP echo for the traceroute probe.

icmp-extensions

Shows ICMP extensions (rfc4884). The general form is *CLASS/TYPE:* followed by a hexadecimal dump.

interface value

Specifies the interface that the device must use for traceroute requests.

interval value

Specifies the time in seconds between traceroute requests from the device.

max-ttl value

Specifies the maximum number of hops for the probe.

no-fragment

Does not fragment the probe packets.

num-queries number

Specifies the number of probe packets per hop. The default is 3.

port number

For UDP tracing, specifies the destination port base traceroute will use (the destination port number will be incremented by each probe). For ICMP tracing, specifies the initial icmp sequence value (incremented by each probe too). For TCP specifies just the (constant) destination port to connect.

seq-queries number

Specifies the number of sequential probe packets.

source-addr host

Specifies an alternative source host by hostname, IPv4 address, or MAC address.

tcp-syn

Uses TCP SYN for the probes.

version

Displays the timestamp during ping output.

wait-time value

Specifies the time (seconds) to wait for a response from the probe. Default is 5 seconds.

Operational mode

Use this command to perform a "traceroute" operation for a network host. This operation uses the IP protocol time-to-live (TTL) field and attempts to elicit an Internet Control Message Protocol (ICMP) TIME_EXCEEDED response from each gateway along the path to a host to track the route that a set of packets follows. It attempts to trace the route an IP packet follows to an Internet host by launching User Datagram Protocol (UDP) probe packets with a small time to live, then listening for an ICMP "Time exceeded" reply from a gateway.

The following example illustrates a traceroute to google.com with packets marked with tos equal to 3.

```
vyatta@vyatta#traceroute google.com tos 3
traceroute to google.com (74.125.224.2), 30 hops max, 60 byte packets
1 gateway.attlocal.net (10.0.6.1) 0.374 ms 0.550 ms 0.353 ms
2 75-25-153-214.uvs.sntcca.sbcglobal.net (75.25.153.214) 7.270 ms 15.975
ms 7.238 ms
3 76-198-128-2.lightspeed.mtvwca.sbcglobal.net (76.198.128.2) 29.199 ms
38.969 ms 28.635 ms
4
  71.145.0.192 (71.145.0.192) 35.803 ms 36.212 ms 28.590 ms
 12.83.39.189 (12.83.39.189) 34.061 ms 32.033 ms 42.496 ms
5
 12.122.136.181 (12.122.136.181) 39.973 ms 41.665 ms 41.608 ms
6
7
  * * *
  216.239.49.168 (216.239.49.168) 29.549 ms 26.607 ms 26.583 ms
8
9
 72.14.232.33 (72.14.232.33) 28.133 ms 27.602 ms 29.294 ms
10 nuq04s18-in-f2.1e100.net (74.125.224.2) 28.553 ms 30.071 ms 28.028
ms
```

traceroute version

Displays the route that packets take to a network host.

traceroute [ipv4 | ipv6] host version [options]

ipv4

Explicitly force IPv4 traceouting. By default, the program will try to resolve the name given, and choose the appropriate protocol automatically. If resolving a host name returns both IPv4 and IPv6 addresses, traceroute will use IPv4.

ipv6

Explicitly force IPv6 traceouting. By default, the program will try to resolve the name given, and choose the appropriate protocol automatically. If resolving a host name returns both IPv4 and IPv6 addresses, traceroute will use IPv6.

host

A host that is the destination for the trace. The host is specified as a name (if DNS is being used on the network), as an IPv4 or IPv6 address, or as a MAC address (format h:h:h:h:h:h:h:h).

version

Displays the timestamp during ping output.

options

The following entries are options. Multiple options can be included on the same command line.

as-path

Performs AS path lookups in routing registries and print results directly after the corresponding addresses.

bypass-routing

Bypasses the normal routing tables and send directly to a host on an attached network. If the host is not on a directly-attached network, an error is returned. This option can be used to ping a local host through an interface that has no route through it.

debug-socket

Enables socket level debugging.

first-ttl value

Specifies the first time-to-live value. Defaults to 1.

gateway address

Routes the request through a specified gateway.

icmp-echo

Uses ICMP echo for the traceroute probe.

icmp-extensions

Shows ICMP extensions (rfc4884). The general form is *CLASS/TYPE:* followed by a hexadecimal dump.

interface value

Specifies the interface that the device must use for traceroute requests.

interval value

Specifies the time in seconds between traceroute requests from the device.

max-ttl value

Specifies the maximum number of hops for the probe.

no-fragment

Does not fragment the probe packets.

num-queries number

Specifies the number of probe packets per hop. The default is 3.

port number

For UDP tracing, specifies the destination port base traceroute will use (the destination port number will be incremented by each probe). For ICMP tracing, specifies the initial icmp sequence value (incremented by each probe too). For TCP specifies just the (constant) destination port to connect.

seq-queries number

Specifies the number of sequential probe packets.

source-addr host

Specifies an alternative source host by hostname, IPv4 address, or MAC address.

tcp-syn

Uses TCP SYN for the probes.

tos value

Marks the packets with the specified Type of Service (TOS) value.

wait-time value

Specifies the time (seconds) to wait for a response from the probe. Default is 5 seconds.

Operational mode

Use this command to perform a "traceroute" operation for a network host. This operation uses the IP protocol time-to-live (TTL) field and attempts to elicit an Internet Control Message Protocol (ICMP) TIME_EXCEEDED response from each gateway along the path to a host to track the route that a set of packets follows. It attempts to trace the route an IP packet follows to an Internet host by launching User Datagram Protocol (UDP) probe packets with a small time to live, then listening for an ICMP "Time exceeded" reply from a gateway.

The following example illustrates a traceroute to google.com showing timestamp during ping output.

vyatta@vyatta#traceroute google.com version

traceroute wait-time

Displays the route that packets take to a network host.

traceroute [ipv4 | ipv6] host wait-time value [options]

ipv4

Explicitly force IPv4 traceouting. By default, the program will try to resolve the name given, and choose the appropriate protocol automatically. If resolving a host name returns both IPv4 and IPv6 addresses, traceroute will use IPv4.

ipv6

Explicitly force IPv6 traceouting. By default, the program will try to resolve the name given, and choose the appropriate protocol automatically. If resolving a host name returns both IPv4 and IPv6 addresses, traceroute will use IPv6.

host

A host that is the destination for the trace. The host is specified as a name (if DNS is being used on the network), as an IPv4 or IPv6 address, or as a MAC address (format h:h:h:h:h:h:h:h).

wait-time value

Specifies the time (seconds) to wait for a response from the probe. Default is 5 seconds.

options

The following entries are options. Multiple options can be included on the same command line.

as-path

Performs AS path lookups in routing registries and print results directly after the corresponding addresses.

bypass-routing

Bypasses the normal routing tables and send directly to a host on an attached network. If the host is not on a directly-attached network, an error is returned. This option can be used to ping a local host through an interface that has no route through it.

debug-socket

Enables socket level debugging.

first-ttl value

Specifies the first time-to-live value. Defaults to 1.

gateway address

Routes the request through a specified gateway.

icmp-echo

Uses ICMP echo for the traceroute probe.

icmp-extensions

Shows ICMP extensions (rfc4884). The general form is *CLASS/TYPE:* followed by a hexadecimal dump.

interface value

Specifies the interface that the device must use for traceroute requests.

interval value

Specifies the time in seconds between traceroute requests from the device.

max-ttl value

Specifies the maximum number of hops for the probe.

no-fragment

Does not fragment the probe packets.

num-queries number

Specifies the number of probe packets per hop. The default is 3.

port number

For UDP tracing, specifies the destination port base traceroute will use (the destination port number will be incremented by each probe). For ICMP tracing, specifies the initial icmp sequence value (incremented by each probe too). For TCP specifies just the (constant) destination port to connect.

seq-queries number

Specifies the number of sequential probe packets.

source-addr host

Specifies an alternative source host by hostname, IPv4 address, or MAC address.

tcp-syn

Uses TCP SYN for the probes.

tos value

Marks the packets with the specified Type of Service (TOS) value.

version

Displays the timestamp during ping output.

Operational mode

Use this command to perform a "traceroute" operation for a network host. This operation uses the IP protocol time-to-live (TTL) field and attempts to elicit an Internet Control Message Protocol (ICMP) TIME_EXCEEDED response from each gateway along the path to a host to track the route that a set of packets follows. It attempts to trace the route an IP packet follows to an Internet host by launching User Datagram Protocol (UDP) probe packets with a small time to live, then listening for an ICMP "Time exceeded" reply from a gateway.

The following example illustrates a traceroute to google.com waiting 2 seconds between probes.

```
vyatta@vyatta#traceroute google.com wait-time 2
traceroute to google.com (74.125.224.2), 30 hops max, 60 byte packets
1 pipsqueak.attlocal.net (10.0.6.1) 0.409 ms 0.452 ms 0.346 ms
2 75-25-153-214.uvs.sntcca.sbcqlobal.net (75.25.153.214) 13.497 ms
13.517 ms 13.509 ms
3 76-198-128-2.lightspeed.mtvwca.sbcglobal.net (76.198.128.2) 35.910 ms
34.763 ms 35.876 ms
4 71.145.0.192 (71.145.0.192) 35.981 ms 35.979 ms 34.775 ms
5 12.83.39.189 (12.83.39.189) 39.654 ms 39.662 ms 44.599 ms
6
  12.122.136.181 (12.122.136.181) 85.423 ms 84.396 ms 84.358 ms
7
  * * *
8 216.239.49.168 (216.239.49.168) 33.291 ms 27.613 ms 28.017 ms
  72.14.232.33 (72.14.232.33) 45.214 ms 45.849 ms 44.999 ms
9
10 nuq04s18-in-f2.1e100.net (74.125.224.2) 30.505 ms 29.739 ms 30.298
ms
```

traceroute

Displays the route that packets take to a network host.

traceroute [ipv4 | ipv6] host [option]

ipv4

Displays the route that packets take to the IPv4 address of the host. This keyword is used when the host is specified as a host name rather than as an IP address.

ipv6

Displays the route that packets take to the IPv6 address of the host. This keyword is used when the host is specified as a host name rather than as an IP address.

host

A host that is the destination for the trace. The host is specified as a name (if DNS is being used on the network), as an IPv4 or IPv6 address, or as a MAC address (format <h:h:h:h:h:h:h:h:h).

option

Displays the route that packets take to the host. This keyword is used when the host is specified as a host name rather than as an IP address.

Operational mode

Use this command to perform a "traceroute" operation for a network host. This operation uses the IP protocol time-to-live (TTL) field and attempts to elicit an Internet Control Message Protocol (ICMP) TIME_EXCEEDED response from each gateway along the path to a host to track the route that a set of packets follows. It attempts to trace the route an IP packet follows to an Internet host by launching User Datagram Protocol (UDP) probe packets with a small time to live, then listening for an ICMP "Time exceeded" reply from a gateway.

traceroute

Displays the route that packets take to a network host.

```
traceroute [ ipv4 | ipv6 ] host
```

ipv4

Displays the route that packets take to the IPv4 address of the host. This keyword is used when the host is specified as a host name rather than as an IP address.

ipv6

Displays the route that packets take to the IPv6 address of the host. This keyword is used when the host is specified as a host name rather than as an IP address.

host

A host that is the destination for the trace. The host is specified as a name (if DNS is being used on the network), an IPv4 or IPv6 address, or MAC address.

Operational mode

Use this command to perform a "traceroute" operation for a network host. This operation uses the IP protocol time-to-live (TTL) field and attempts to elicit an Internet Control Message Protocol (ICMP) TIME_EXCEEDED response from each gateway along the path to a host to track the route that a set of packets follows. It attempts to trace the route an IP packet follows to an Internet host by launching User Datagram Protocol (UDP) probe packets with a small time to live, then listening for an ICMP "Time exceeded" reply from a gateway.

Chapter 5. ECMP

ECMP overview

ECMP is a technique that routes packets along multiple paths of equal cost. ECMP provides a load-balancing mechanism to ensure optimum usage of a routing path.

The router supports the following load-balancing mechanisms:

- Modulo-n-hash
- Hash-threshold
- Highest Random Weight (HRW)

The router calculates the key of the packet flow for every ECMP selection algorithm. The next-hop selection algorithm calculates the key of the flow and chooses the next hop.

The router supports the HRW load-balancing mechanism by default. You can change the ECMP mode, if required.

ECMP is enabled on Border Gateway Protocol (BGP) by configuring the maximum number of ECMP routes for External BGP (eBGP) or Internal BGP (iBGP).

Chapter 6. ECMP Commands

protocols ecmp disable

Disables ECMP routing.

set protocols ecmp disable

None.

Configuration mode.

```
protocols {
    ecmp {
      disable {}
    }
}
```

protocols ecmp maximum-paths

Sets the maximum number of next hops for ECMP routing.

set protocols ecmp maximum-paths number

```
delete protocols ecmp maximum-paths
```

None

maximum-paths *number*

Sets the maximum number of next hops for ECMP routing.

Configuration mode.

```
protocols {
    ecmp {
        maximum-paths number{}
    }
}
```

Use the $_{\tt set}$ form of this command to set the maximum number of next hops for ECMP routing.

Use the delete form of this command to remove the maximum number of next hops for ECMP routing.

protocols ecmp mode

Sets the load-balancing mechanism for ECMP.

```
set protocols ecmp mode hash-threshold | hrw | modulo-n
delete protocols ecmp mode hash-threshold | hrw | modulo-n
show protocols ecmp mode hash-threshold | hrw | modulo-n
```

None

hash-threshold

Sets the hash-threshold ECMP routing mode.

hrw

Sets the highest random weight ECMP routing mode. This mode is the default.

modulo-n

Sets the modulo-n-hash ECMP routing mode.

Configuration mode.

```
protocols {
    ecmp {
        mode {
            hash-threshold
            hrw
            modulo-n
        }
    }
}
```

Use the set form of this command to set the load-balancing mechanism for ECMP.

Use the delete form of this command to remove the load-balancing mechanism. The ECMP load-balancing mechanism returns to its default setting, which is HRW.

Use the $_{show}$ form of this command to display the current load-balancing mechanism for ECMP.

The following example shows how to set the hash-threshold mode with maximum number of next hops as 34 for ECMP routing.

```
vyatta@vyatta# set protocols ecmp maximum-paths 34
[edit]
vyatta@vyatta# set protocols ecmp mode hash-threshold
[edit]
vyatta@vyatta# commit
```

The output for the ECMP configuration is as follows.

```
vyatta@vyatta# show protocols ecmp
ecmp {
            maximum-paths 34
            mode hash-threshold
        }
[edit]
```

show dataplane route

Displays forward information base (FIB) table that contain all routes including ECMP routes.

show dataplane route

None.

Operational mode.

Use this command to display the FIB table.

FIB table is stored in the data plane.

show dataplane route6

Displays FIB table that contain all IPv6 routes including ECMP routes.

show dataplane route6

None

Operational mode.

Use this command to display IPv6 FIB table.

Chapter 7. Static Routes

Static route configuration

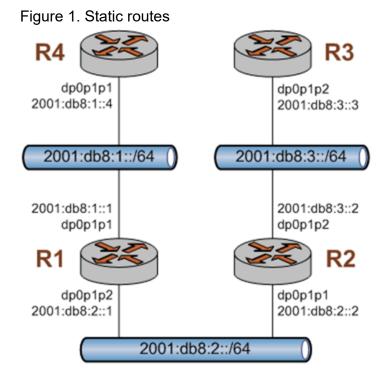
This section presents the following topics:

- <u>Static routes overview</u>
- <u>Configuring static routes</u>
- <u>Creating floating static routes</u>
- Showing static routes in the routing table

Static routes overview

A static route is a manually configured route, which, in general, cannot be updated dynamically from information about the network topology learned by the router. However, if a link fails, the router removes the routes, including static routes, from the Routing Information Base (RIB) that use this interface to reach the next hop.

Usually, static routes should be used only for very simple network topologies, or to override the behavior of a dynamic routing protocol for a small number of routes.


The collection of all routes the router learns from its configuration, or from its dynamic routing protocols, is stored in its RIB.

Unicast routes are directly used to determine the forwarding table for unicast packet forwarding.

Blackhole routes are static unreachable routes that can be configured to send ICMP unreachable responses on packets.

Configuring static routes

Figure 1: Static routes presents sample configurations of basic static routes. When you are finished with <u>Configuring static routes</u>, the system is configured as shown in the figure. In the example, a static route is created that says, in effect, "any packets destined for the 11.0.0.0/8 network should be forwarded to 172.16.0.26."

This section includes the following example:

<u>Configuring static routes</u>

<u>Configuring static routes</u> shows how to create a static route to the 11.0.0.0/8 network that is directed toward 172.16.0.26.

To create a static route, perform the following steps in configuration mode.

Table 1. Creating a static route

Step	Command
Create a static route to R2.	vyatta@Rl# set protocols static route 11.0.0.0/8 next-hop 172.16.0.26
Commit the configuration.	vyatta@R1# commit
View the configuration.	<pre>vyatta@R1# show protocols static route route 11.0.0.0/8 { next-hop 172.16.0.26 { } }</pre>

Creating floating static routes

Usually, static routes have a relatively short administrative distance—typically 1, and normally shorter than the administrative distances for dynamic (learned) routes. A "floating"

static route is a static route with an administrative distance greater than the administrative distance for dynamic routes.

You can configure a static route to be a floating route by setting the administrative distance higher than the distance applied to the routes in your dynamic routing protocol. This higher distance renders the static route less desirable than a dynamic route. At the same time, if the dynamic route is lost, the static route is available to take over traffic, which can be forwarded through the static route as an alternate path.

Note: When configuring the administrative distance (AD) of a protocol, keep in mind when you specify the distance value of 255, the router will disbelieve the source and will not add the route to the routing table.

Showing static routes in the routing table

To display route information, use the show ip route command. To show just static routes, use the show ip route static command, as shown in the following example.

Showing static routes in the routing table

Static IPv6 route configuration

Figure 2: Static IPv6 routing example shows an IPv6 network with three nodes. <u>Verify that IPv6 forwarding is enabled</u> shows how to configure nodes that use static routes to enable R2 and R4 to communicate through R1.

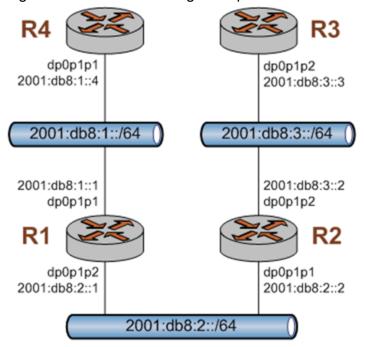


Figure 2. Static IPv6 routing example

Verify that IPv6 forwarding is enabled

For R1 to be able to pass data between the dp0p0p0 and dp0p0p2 interfaces (that is, between R4 and R2), R1 must be configured to enable forwarding. To determine if forwarding is enabled, perform the following step in operational mode.

Table 2. Determining	ı if	forwarding	is	enabled on R1
	J	ion mananing		

Step	Command
Display the state of IPv6 forwarding on R1.	vyatta@Rl:~\$ show ipv6 forwarding ipv6 forwarding is off

If forwarding is not enabled, as in the example below, the system must be configured to enable forwarding. To enable forwarding, perform the following steps in configuration mode.

Table 3. Enable forwarding on R1

Step	Command
Enable forwarding on R1.	vyatta@Rl# set system ipv6 disable-forwarding
Commit the change.	vyatta@Rl# commit
Change to operational mode.	vyatta@R1# exit exit vyatta@R1:~\$

Step	Command
Display the state of IPv6 forwarding on R1.	vyatta@Rl:~\$ show ipv6 forwarding ipv6 forwarding is on

Add the default IPv6 route

On R4, all traffic that is not routed elsewhere is sent to R1. To configure the default route, perform the following steps in configuration mode.

Table 4.	Adding	the	default	route	on R4
----------	--------	-----	---------	-------	-------

Step	Command
Add the default route on R4.	vyatta@R4# set protocols static route6 ::/0 next-hop 2001:db8:1::1
Commit the change.	vyatta@R4# commit
Change to operational mode.	vyatta@R4# exit exit vyatta@R4:~\$
Verify the default route in the routing table.	<pre>vyatta@R4:~\$ show ipv6 route Codes: K - kernel route, C - connected, S - static, R - RIPng, O - OSPFv3, I - ISIS, B - BGP, * - FIB route. S* ::/0 [1/0] via 2001:db8:1::1, dp0p0p0 C* * ::/1/128 is directly connected, lo C>* 2001:db8:1::/64 is directly connected, dp0p0p0 C * fe80::/64 is directly connected, dp0p0p1 C>* fe80::/64 is directly connected, dp0p0p0 K>* ff00::/8 is directly connected, dp0p0p0</pre>

Add a static IPv6 route

As an alternative to the default route created on R4, create a static route on R2. To configure a static route to the 2001:db8:1::/64 network, perform the following steps in configuration mode.

Step	Command
Add a static route on R2.	vyatta@Rl# set protocols static route6 2001:db8:1::/64 next-hop 2001:db8:2::1
Commit the change.	vyatta@R1# commit
Change to operational mode.	vyatta@R1# exit exit vyatta@R2:~\$
Verify the static route in the routing table.	vyatta@R2:~\$ show ipv6 route Codes: K - kernel route, C - connected, S - static, R - RIPng, O - OSPFv3,

Step	Command	
	<pre>I - ISIS, B - BGP, * - FIB route. C>* ::1/128 is directly connected, lo S>* 2001:db8:1::/64 [1/0] via 2001:db8:2::1, dp0p0p0 C>* 2001:db8:2::/64 is directly connected, dp0p0p0 C * fe80::/64 is directly connected, dp0p0p1 C>* fe80::/64 is directly connected, dp0p0p0 K>* ff00::/8 is directly connected, dp0p0p0</pre>	

Table 5. Adding a static IPv6 route (continued)

Confirm connectivity

To confirm that R2 and R4 can communicate, use the ping command. To confirm connectivity between R2 and R4, perform the following step in operational mode.

Table 6. Confirming connectivity between R2 and R4

Step	Command
Ping R4 from R2.	<pre>vyatta@R2:~\$ ping 2001:db8:1::4 PING 2001:db8:1::4(2001:db8:1::4) 56 data bytes 64 bytes from 2001:db8:1::4: icmp_seq=1 ttl=63 time=5.65 ms 64 bytes from 2001:db8:1::4: icmp_seq=2 ttl=63 time=0.382 ms ^C 2001:db8:1::4 ping statistics 2 packets transmitted, 2 received, 0% packet loss, time 1011ms rtt min/avg/max/mdev = 0.382/3.016/5.650/2.634 ms</pre>

As an alternative, use the traceroute command to verify that the route goes from R2 to R1 to R4. To confirm connectivity between R2 and R4 through R1 by using the traceroute command, perform the following step in operational mode.

Table 7. Confirming connectivity between R2 and R4 through R1

Step	Command
Trace the route from R2 to R4.	<pre>vyatta@R2:~\$ traceroute 2001:db8:1::4 traceroute to 2001:db8:1::4 (2001:db8:1::4), 30 hops max, 40 byte packets 1 (2001:db8:2::1) 4.448 ms 4.148 ms 4.092 ms 2 (2001:db8:1::4) 4.297 ms 4.306 ms 4.308 ms</pre>

Static Route Tag Configuration

Overview

Static route tags support filtering and redistributing static routes into other protocols. The filtering and redistribution of static routes into other routing protocols are based on the tag.

These commands let you assign a tag to a static route:

- protocols static route blackhole
- protocols static route next-hop

- protocols static route unreachable
- protocols static route6 blackhole
- protocols static route6 next-hop
- protocols static route6 unreachable
- protocols static interface-route next-hop-interface
- protocols static interface-route6 next-hop-interface
- protocols static route next-hop-routing-instance next-hop
- protocols static route6 next-hop-routing-instance next-hop
- protocols static interface-route next-hop-routing-instance next-hop-interface
- protocols static interface-route6 next-hop-routing-instance next-hop-interface

The routing protocols that are able to redistribute static routes based on a tag are:

- OSPFv2
- RIP
- RIPng
- BGP

PBR routes (set protocols static table ...) do not support static route tagging because PBR routes are not redistributed to protocols.

The tag is distributed along with the route to the IGP peers. (This does not apply to BGP because it does not include a tag in its updates). The tag is visible in the peer RIB, where it can be utilized for downstream redistribution. The route-map parameter can match on the tag value to distribute static routes to dynamic routing protocols.

In addition to matching a specific tag, you can change a tag's value redistribution by using set policy route route-map name rule num set tag new-tag-value. XREF includes an example of this action.

Equal Cost Multi-Path Routing

A tag is associated with each entry in the routing information base (RIB) and a RIB can have multiple, equal-cost nexthops. The tag is specified for each nexthop and must have the same value for all nexthops with the same administrative distance.

You can use a different tag for a different administrative distance because a different distance forms a different RIB entry. For example, you might want to redistribute the route only when it is using the primary path(s) but not if it has fallen over to a back-up path. To set up this behavior, add a tag option for a static route if a distance option exists, as in the following example:

```
vyatta@yvatta# set protocols static route 11.1.4.0/24 next-hop 10.10.1.2
tag 1
vyatta@yvatta# set protocols static route 11.1.4.0/24 next-hop 10.10.2.2
distance 5
vyatta@yvatta# set protocols static route 11.1.4.0/24 next-hop 10.10.2.2
tag 2
```

The preceding commands create two RIB entries:

- An entry for 10.10.1.2 with tag 1
- An entry for 10.10.2.2 with tag 2: this route is activated only if the first route goes down

Operational Mode Commands

To see the tag assigned to a static route, use a show ip route prefix Or show ipvx6 route prefix command. In the following examples, 11.1.5.0/24 was configured with tag 1 and 11:1:3::/64 with tag 2.

```
vyatta@yvatta~$ show ip route 11.1.5.0
Routing entry for 11.1.5.0/24
Known via "static", distance 1, metric 0, tag 1, best
via 10.10.100.2, dp0pls2.100
vyatta@yvatta~$ show ipv6 route 11:1:3::
Routing entry for 11:1:3::/64
Known via "static", distance 1, metric 0, tag 2, best
is a summary, Rejectt
```

Static Route/Interface-Route Example

This section shows examples of set commands for static routes and static interface routes and show commands for the results.

```
vyatta@yvatta# set protocols static route 12.1.1.0/24 next-hop 11.1.2.2 tag
1
...
vyatta@vyatta:~$ show ip route 12.1.1.0/24
Routing entry for 12.1.1.0/24
Known via "static", distance 1, metric 0, tag 1, best
via 11.1.2.2, dp0pls1.2110
vyatta@yvatta# set protocols static interface-route 13.1.1.0/24
next-hop-interface dp0pls1 tag 10
...
vyatta@yvatta:~$ show ip route 13.1.1.0/24
Routing entry for 13.1.1.0/24
Known via "static", distance 1, metric 0, tag 10, best
* is directly connected, dp0pls1
```

Static Route6/Interface-route6 Example

This section shows examples of set commands for IPv6 static route and IPv6 static interface route and show commands for the results.

```
vyatta@yvatta# set protocols static route6 12:1:1::/64 next-hop
10:10:100::2 tag 20
...
vyatta@yvatta:~$ show ipv6 route 12:1:1::/64
Routing entry for 12:1:1::/64
Known via "static", distance 1, metric 0, tag 20, best
via 10:10:100::2, dp0pls2.100
vyatta@yvatta# set protocols static interface-route6 13:1:1::/64
next-hop-interface dp0pls2.100 tag 30
...
vyatta@yvatta:~$ show ipv6 route 13:1:1::/64
Routing entry for 13:1:1::/64
Known via "static", distance 1, metric 0, tag 30, best
* is directly connected, dp0pls2.100
```

Static Cross-Routing-Instance Route Example

This section shows an examples of set commands for IPv6 static route and IPv6 static interface route and show commands for the results.

```
vyatta@yvatta# set protocols static route 14.1.1.0/24
next-hop-routing-instance red next-hop 10.10.200.2 tag 50
...
vyatta@yvatta:~$ show ip route 14.1.1.0/24
Routing entry for 14.1.1.0/24
Known via "static", distance 1, metric 0, tag 50, best
via 10.10.200.2, dp0p1s2.200 (red)
vyatta@yvatta# set routing routing-instance red protocols static
interface-route 14.1.1.0/24 next-hop-routing-instance default
next-hop-interface dp0p1s1 tag 60
...
vyatta@yvatta:~$ show ip route routing-instance red 14.1.1.0/24
Routing entry for 14.1.1.0/24
Known via "static", distance 1, metric 0, tag 60, best
* is directly connected, dp0p1s1 (default)
```

Static ECMP Route Example

```
vyatta@yvatta# set protocols static route 12.1.1.0/24 next-hop 11.1.2.2 tag
1
vyatta@yvatta# set protocols static route 12.1.1.0/24 next-hop 11.1.2.6 tag
1
vyatta@yvatta# set protocols static route 12.1.1.0/24 next-hop 11.1.2.8
distance 2
```

```
vyatta@yvatta# set protocols static route 12.1.1.0/24 next-hop 11.1.2.8 tag
2
vyatta@yvatta:~$ show ip route 12.1.1.0/24
Routing entry for 12.1.1.0/24
Known via "static", distance 2, metric 0, tag 2
via 11.1.2.8, dp0pls1.2112
Routing entry for 12.1.1.0/24
Known via "static", distance 1, metric 0, tag 1, best
via 11.1.2.6, dp0pls1.2111
via 11.1.2.2, dp0pls1.2110
```

Invalid ECMP: Tag Value Conflict Example

```
vyatta@yvatta# set protocols static route 12.2.2.0/24 next-hop 11.1.2.2 tag
1
[edit]
vyatta@yvatta# set protocols static route 12.2.2.0/24 next-hop 11.1.2.8 tag
2
[edit]
vyatta@yvatta# commit
[protocols static route 12.2.2.0/24 next-hop 11.1.2.2]
Next-hops with the same distance must have the same tag.
[[protocols static route 12.2.2.0/24 next-hop 11.1.2.2]] failed.
[protocols static route 12.2.2.0/24 next-hop 11.1.2.8]
Next-hops with the same distance must have the same tag.
[[protocols static route 12.2.2.0/24 next-hop 11.1.2.8]
Next-hops with the same distance must have the same tag.
[[protocols static route 12.2.2.0/24 next-hop 11.1.2.8]
Next-hops with the same distance must have the same tag.
[[protocols static route 12.2.2.0/24 next-hop 11.1.2.8]] failed.
Commit failed!
```

Redistribution Example

```
Options: 0x22 (-|-|DC|-|-|E|-)

LS Type: AS-external-LSA

Link State ID: 15.1.1.0 (External Network Number)

Advertising Router: 1.1.1.1

LS Seq Number: 8000001

Checksum: 0x2b59

Length: 36

Network Mask: /24

Metric Type: 2 (Larger than any link state path)

TOS: 0

Metric: 20

Forward Address: 0.0.0.0

External Route Tag: 5
```

Redistribution by Use of a Different Tag Example

```
vyatta@yvatta# set policy route route-map static-export rule 10 action
permit
vyatta@yvatta# set policy route route-map static-export rule 10 match tag 5
vyatta@yvatta# set policy route route-map static-export rule 10 set tag 50
vyatta@yvatta# set protocols static interface-route6 15:1:1::/64
next-hop-interface dp0p1s1 tag 5
vyatta@yvatta# set protocols ospfv3 redistribute static route-map
static-export
vyatta@yvatta:~$ show ipv6 route 15:1:1::/64
Routing entry for 15:1:1::/64
 Known via "static", distance 1, metric 0, tag 5, best
  * is directly connected, dp0p1s1
vyatta@yvatta:~$ show ipv6 ospfv3 database external
      OSPFv3 Router with ID (1.1.1.1) (Process *null* Routing-instance
 default)
      AS-external-LSA
       LS age: 161
       LS Type: AS-External-LSA
       Link State ID: 0.0.0.1
       Advertising Router: 1.1.1.1
       LS Seq Number: 0x8000002
        Checksum: 0x4C1C
       Length: 40
        Metric Type: 2 (Larger than any link state path)
        Metric: 20
        Prefix: 15:1:1::/64
        Prefix Options: 0(-|-|-|-)
         External Route Tag: 50
```

Troubleshooting

The following commands can help with troubleshooting:

- show ip route prefix Or show ipv6 route prefix: shows the tag associated with the route
- show ip ospf database external: shows redistributed routes, including the external tag
- show ipv6 ospfv3 database external: as above, but for IPv6 and OSPFv3

Chapter 8. Static Route Commands

protocols static interface-route description

Sets the description of an interface-based static route.

set protocols static interface-route subnet description description

delete protocols static interface-route subnet description description

show protocols static interface-route subnet description description

subnet

Multi-node. An interface-based static route. The format is a destination subnet of the form *address/prefix* (*x.x.x.xlx*)).

You can define multiple interface-based routes by creating multiple **interface-route** configuration nodes.

description

Description of the static route.

Configuration mode

```
protocols {
  static {
    interface-route subnet {
    next-hop-interface {
      description
    }
  }
}
```

Use the set form of this command to set the description of a static route.

Use the delete form of this command to remove the the description of a static route.

Use the show form of this command to view the the description of a static route.

protocols static interface-route next-hop-interface

Configures the next-hop interface for an interface-based static route.

```
set protocols static interface-route subnet next-hop-interface interface [
disable | distance distance | tag redist-tag | path-monitor monitor
name [ policy policy-name [ state { compliant | non-compliant } ] ]
```

```
delete protocols static interface-route subnet next-hop-interface interface [
disable | distance | tag redist-tag | path-monitor monitor monitor-name [
policy policy-name [ state { compliant | non-compliant } ] ]
```

```
show protocols static interface-route subnet next-hop-interface interface [
disable | distance | tag redist-tag | path-monitor monitor monitor-name [
policy policy-name [ state { compliant | non-compliant } ] ]
```

subnet

Multi-node. An interface-based static route. The format is a destination subnet of the form address/prefix (x.x.x.xlx)).

You can define multiple interface-based routes by creating multiple **interface-route** configuration nodes.

interface

The next-hop interface.

disable

Disables the interface-based static route.

distance

The next-hop distance for this route (1-255). Routes with a smaller distance are selected before those with a larger distance. The default distance is 1.

redist-tag

Value to control route redistrbution (1-4294967295). All next-hops for a RIB entry (prefix + distance) must have the same tag.

monitor-name

Name of a Path Monitor instance.

policy-name

Name of a Path Monitor policy.

state

The compliance state:

compliant: All associated Path Monitor policies are compliant.

non-compliant: All associated Path Monitor policies are non-compliant.

Configuration mode

} tag } } }

Use the set form of this command to configure the next-hop interface for a static route. Use the delete form of this command to remove the next-hop interface from a static route. Use the show form of this command to view the next-hop interface for a static route.

protocols static interface-route next-hop-routing-instance next-hop-interface

Configures the routing instance (VRF) and next-hop interface for a static route.

set protocols static interface-route subnet next-hop-routing-instance routinginstance next-hop-interface interface [disable | distance distance | tag redist-tag | path-monitor monitor monitor-name [policy policy-name [state { compliant | non-compliant }]]

delete protocols static interface-route subnet next-hop-routing-instance routinginstance next-hop-interface interface [disable | distance | tag redist-tag | path-monitor monitor monitor-name [policy policy-name [state { compliant | non-compliant }]]

show protocols static interface-route subnet next-hop-routing-instance routinginstance next-hop-interface interface [disable | distance | tag redist-tag | path-monitor monitor monitor-name [policy policy-name [state { compliant | non-compliant }]]

subnet

Multi-node. An interface-based static route. The format is a destination subnet of the form address/prefix (x.x.x.xlx)).

You can define multiple interface-based routes by creating multiple **interface-route** configuration nodes.

routing-instance

Destination routing instance (VRF) for the next-hop interface.

interface

The next-hop interface.

disable

Disables the interface-based static route.

distance

The next-hop distance for this route (1-255). Routes with a smaller distance are selected before those with a larger distance. The default distance is 1.

redist-tag

Value to control route redistrbution (1-4294967295). All next-hops for a RIB entry (prefix + distance) must have the same tag.

monitor-name

Name of a Path Monitor instance.

policy-name

Name of a Path Monitor policy.

state

The compliance state:

compliant: All associated Path Monitor policies are compliant.

non-compliant: All associated Path Monitor policies are non-compliant.

Configuration mode

```
protocols {
        static {
                interface-route {
                        next-hop-routing-instance {
                                 next-hop-interface {
                                          disable
                                          distance
                                          path-monitor {
                                                  monitor {
                                                           policy {
                                                                   state
                                                           }
                                                   }
                                          tag
                                 }
                         }
                }
        }
}
```

Use the set form of this command to configure the routing instance and next-hop interface for a static route.

Use the delete form of this command to remove the routing instance and next-hop interface from a static route.

Use the show form of this command to view the routing instance and next-hop interface for a static route.

protocols static interface-route6 description

Sets the description for an interface-based IPv6 static route.

set protocols static interface-route6 subnet description description

delete protocols static interface-route6 subnet description description

show protocols static interface-route6 subnet description description

subnet

You can define multiple interface-based routes by creating multiple **interface-route** configuration nodes.

description

The next-hop interface.

Configuration mode

```
protocols {
  static {
    interface-route6 subnet {
    next-hop-interface {
      description
    }
  }
}
```

Use the set form of this command to set the description of an IPv6 static route.

Use the delete form of this command to remove the description of an IPv6 static route.

Use the show form of this command to view the description of an IPv6 static route.

protocols static interface-route6 next-hop-interface

Configures the next-hop interface for an interface-based IPv6 static route.

```
set protocols static interface-route6 subnet next-hop-interface interface [
disable | distance distance | tag redist-tag | path-monitor monitor monitor
name [ policy policy-name [ state { compliant | non-compliant } ] ] ]
delete protocols static interface-route6 subnet next-hop-interface interface [
disable | distance | tag redist-tag | path-monitor monitor monitor-name [
policy policy-name [ state { compliant | non-compliant } ] ] ]
show protocols static interface-route6 subnet next-hop-interface interface [
disable | distance | tag redist-tag | path-monitor monitor monitor-name [
policy policy-name [ state { compliant | non-compliant } ] ] ]
```

policy policy-name [state { compliant | non-compliant }]]]

subnet

You can define multiple interface-based routes by creating multiple **interface-route** configuration nodes.

interface

The next-hop interface.

disable

Disables the interface-based IPv6 static route.

distance

The next-hop distance for this route (1-255). Routes with a smaller distance are selected before those with a larger distance. The default distance is 1.

redist-tag

Value to control route redistrbution (1-4294967295). All next-hops for a RIB entry (prefix + distance) must have the same tag.

monitor-name

Name of a Path Monitor instance.

policy-name

Name of a Path Monitor policy.

state

The compliance state:

compliant: All associated Path Monitor policies are compliant.

non-compliant: All associated Path Monitor policies are non-compliant.

Configuration mode

```
protocols {
        static {
                 interface-route6 {
                         next-hop-interface {
                                  disable
                                  distance
                                  path-monitor {
                                           monitor {
                                                   policy {
                                                            state
                                                    }
                                  }
                                  tag
                          }
                 }
        }
}
```

Use the set form of this command to configure the next-hop interface for an IPv6 static route.

Use the delete form of this command to remove the next-hop interface from an IPv6 static route.

Use the show form of this command to view the next-hop interface for an IPv6 static route.

protocols static interface-route6 next-hop-routing-instance next-hop-interface

Configures the routing instance (VRF) and next-hop interface for an IPv6 static route.

set protocols static interface-route6 subnet next-hop-routing-instance routinginstance next-hop-interface interface [disable | distance distance | tag redist-tag | path-monitor monitor monitor-name [policy policy-name [state { compliant | non-compliant }]]

delete protocols static interface-route6 subnet next-hop-routing-instance routinginstance next-hop-interface interface [disable | distance | tag redist-tag | path-monitor monitor monitor-name [policy policy-name [state { compliant | non-compliant }]]

show protocols static interface-route6 subnet next-hop-routing-instance routinginstance next-hop-interface interface [disable | distance | tag redist-tag | path-monitor monitor monitor-name [policy policy-name [state { compliant | non-compliant }]]

subnet

You can define multiple interface-based routes by creating multiple **interface-route** configuration nodes.

routing-instance

Destination routing instance (VRF) for the next-hop interface.

interface

The next-hop interface.

disable

Disables the interface-based static route.

distance

The next-hop distance for this route (1-255). Routes with a smaller distance are selected before those with a larger distance. The default distance is 1.

redist-tag

Value to control route redistrbution (1-4294967295). All next-hops for a RIB entry (prefix + distance) must have the same tag.

monitor-name

Name of a Path Monitor instance.

policy-name

Name of a Path Monitor policy.

state

The compliance state:

compliant: All associated Path Monitor policies are compliant.

non-compliant: All associated Path Monitor policies are non-compliant.

Configuration mode

```
protocols {
        static {
                interface-route6 {
                        next-hop-routing-instance {
                                next-hop-interface {
                                        disable
                                        distance
                                        path-monitor {
                                                  monitor {
                                                          policy {
                                                                   state
                                                           }
                                                  }
                                         tag
                                }
                         }
                }
        }
}
```

Use the set form of this command to configure the routing instance and next-hop interface for an IPv6 static route.

Use the delete form of this command to remove the routing instance and next-hop interface from an IPv6 static route.

Use the show form of this command to view the routing instance and next-hop interface for an IPv6 static route.

protocols static route blackhole

Configures a black hole static route, a destination that is offline and cannot receive traffic or provide messages to the source of the traffic.

```
set protocols static route subnet blackhole [ distance distance | tag redist-tag
]
```

delete protocols static route subnet blackhole [distance | tag redist-tag]

show protocols static route subnet blackhole [distance | tag redist-tag]

subnet

Multi-node. A static route. The format is a destination subnet of the form *address/prefix* (x.x.x.x/x).

You can define multiple static routes by creating multiple **route** configuration nodes.

distance

The black hole distance for this route (1-255). Routes with a smaller distance are selected before those with a larger distance. The default distance is 1.

redist-tag

Value to control route redistrbution (1-4294967295). All next-hops for a RIB entry (prefix + distance) must have the same tag.

Configuration mode

```
protocols {
  static {
   route subnet {
    blackhole {
     distance distance
     tag value
    }
  }
}
```

Use the set form of this command to configure a black hole static route.

Use the delete form of this command to remove a black hole static route.

Use the show form of this command to view a black hole static route.

protocols static route description

Sets the description for a static route.

set protocols static route subnet description description

delete protocols static route subnet description description

show protocols static route subnet description description

subnet

Multi-node. A static route. The format is a destination subnet of the form *address/prefix* (x.x.x.x/x).

You can define multiple static routes by creating multiple route configuration nodes.

description

The description of the static route.

Configuration mode

```
protocols {
  static {
   route subnet {
    description
   }
  }
}
```

Use the set form of this command to set the description of a static route.

Use the delete form of this command to remove the description of a static route.

Use the show form of this command to view the description of a static route.

protocols static route next-hop

Configures the next hop for a static route.

```
set protocols static route subnet next-hop address [ disable | distance
distance | fall-over bfd | interface interface-name | tag redist-tag | path-
monitor monitor monitor-name [ policy policy-name [ state { compliant | non-
compliant } ] ]
```

delete protocols static route subnet next-hop address [disable | distance |
fall-over bfd | interface interface-name | tag redist-tag | path-monitor
monitor monitor-name [policy policy-name [state { compliant | non-compliant
}]]

show protocols static route subnet next-hop address [disable | distance | fallover | interface | tag redist-tag | path-monitor monitor monitor-name [policy policy-name [state { compliant | non-compliant }]]

subnet

Multi-node. A static route. The format is a destination subnet of the form *address/prefix* (x.x.x.xlx).

You can define multiple static routes by creating multiple route configuration nodes.

address

The address of the next-hop router.

disable

Disables the static route.

distance

Sets the next-hop distance for this route (1-255). Routes with a smaller distance are selected before those with a larger distance. The default distance is 1.

fall-over bfd

Enables BFD support for fallover.

interface-name

Specifies the name of the outgoing intrface.

redist-tag

Value to control route redistrbution (1-4294967295). All next-hops for a RIB entry (prefix + distance) must have the same tag.

monitor-name

Name of a Path Monitor instance.

policy-name

Name of a Path Monitor policy.

state

The compliance state:

compliant: All associated Path Monitor policies are compliant.

non-compliant: All associated Path Monitor policies are non-compliant.

Configuration mode

```
protocols {
        static {
                 route {
                          next-hop {
                                   disable
                                   distance
                                   fall-over bfd
                                   interface
                                   path-monitor {
                                           monitor {
                                                   policy {
                                                             state
                                                   }
                                   }
                                   tag
                          }
                 }
        }
}
```

Use the set form of this command to configure the next hop for a static route.

Use the delete form of this command to remove the next hop from a static route.

Use the show form of this command to view the next hop for a static route.

protocols static route next-hop-routing-instance next-hop

Configures the routing instance (VRF) and next hop for a static route.

```
set protocols static route subnet next-hop-routing-instance routing-instance
next-hop address [ disable | distance distance | interface interface-name
| tag redist-tag | path-monitor monitor monitor-name [ policy policy-name [
state { compliant | non-compliant } ] ]
```

```
delete protocols static route subnet next-hop-routing-instance routing-instance
next-hop address [ disable | distance distance | interface interface-name
| tag redist-tag | path-monitor monitor monitor-name [ policy policy-name [
state { compliant | non-compliant } ] ]
```

```
show protocols static route subnet next-hop-routing-instance routing-instance
next-hop address [ disable | distance distance | interface interface-name
| tag redist-tag | path-monitor monitor monitor-name [ policy policy-name [
state { compliant | non-compliant } ] ]
```

subnet

Multi-node. A static route. The format is a destination subnet of the form *address/prefix* (x.x.x.xlx).

You can define multiple static routes by creating multiple route configuration nodes.

routing-instance

Destination routing instance (VRF) for the next-hop address.

address

The address of the next-hop router.

disable

Disables the static route.

distance

Distance for this route (1-255). Routes with a smaller distance are selected before those with a larger distance. The default distance is 1.

interface-name

The name of the outgoing interface.

redist-tag

Value to control route redistrbution (1-4294967295). All next-hops for a RIB entry (prefix + distance) must have the same tag.

monitor-name

Name of a Path Monitor instance.

policy-name

Name of a Path Monitor policy.

state

The compliance state:

compliant: All associated Path Monitor policies are compliant.

non-compliant: All associated Path Monitor policies are non-compliant.

Configuration mode

```
protocols {
        static {
                route subnet {
                       next-hop-routing-instance {
                               next-hop address {
                                         disable
                                         distance
                                         interface
                                         path-monitor {
                                                 monitor {
                                                         policy {
                                                                 state
                                                          }
                                                 }
                                         tag
                                 }
                         }
                }
        }
}
```

Use the set form of this command to configure the routing instance and next hop for a static route.

Use the delete form of this command to remove the routing instance and next hop from a static route.

Use the show form of this command to view the routing instance and next hop for a static route.

protocols static route unreachable

Configures an unreachable static route, a destination for which packets are discarded and replied with an ICMP Type 3 message (destination unreachable).

```
set protocols static route subnet unreachable [ tag redist-tag ]
```

```
delete protocols static route subnet unreachable [ tag redist-tag ]
```

```
show protocols static route subnet unreachable [ tag redist-tag ]
```

subnet

Multi-node. A static route. The format is a destination subnet of the form *address/prefix* (x.x.x.x/x).

You can define multiple static routes by creating multiple **route** configuration nodes.

redist-tag

Value to control route redistrbution (1-4294967295). All next-hops for a RIB entry (prefix + distance) must have the same tag.

Configuration mode

```
protocols {
    static {
        route subnet {
            unreachable {
               tag
               }
        }
}
```

Use the set form of this command to configure an unreachable static route.

Use the delete form of this command to remove an unreachable static route.

Use the show form of this command to view an unreachable route.

protocols static route6 blackhole

Configures a black hole IPv6 static route, a destination that is offline and cannot receive traffic or provide messages to the source of the traffic.

```
set protocols static route6 subnet blackhole [ distance distance | tag redist-
tag ]
```

```
delete protocols static route6 subnet blackhole [ distance distance | tag redist-
tag ]
```

```
show protocols static route6 subnet blackhole [ distance distance | tag redist-tag ]
```

subnet

Multi-node. An IPv6 static route. The format is a destination subnet of the form IPv6address/prefix (h:h:h:h:h:h:h:h:h/x).

You can define multiple static routes by creating multiple route configuration nodes.

distance

The black hole distance for this route (1-255). Routes with a smaller distance are selected before those with a larger distance. The default distance is 1.

redist-tag

Value to control route redistrbution (1-4294967295). All next-hops for a RIB entry (prefix + distance) must have the same tag.

Configuration mode

```
protocols {
    static {
        route6 {
            blackhole {
                distance
                tag
                }
        }
}
```

Use the set form of this command to configure a black hole IPv6 static route.

Use the delete form of this command to remove a black hole IPv6 static route.

Use the show form of this command to view a black hole IPv6 static route.

protocols static route6 description

Sets the description of an IPv6 static route.

set protocols static route6 *subnet* **description** *description* delete protocols static route6 *subnet* **description** *description* show protocols static route6 *subnet* **description** *description*

subnet

Multi-node. An IPv6 static route. The format is a destination subnet of the form IPv6address/prefix (h:h:h:h:h:h:h:h:h:x).

You can define multiple static routes by creating multiple route6 configuration nodes.

description

The description of the static route.

Configuration mode

```
protocols {
    static {
        route6 {
            description
        }
    }
}
```

Use this command to configure IPv6 static routes on the router.

Use the set form of this command to set the description of an IPv6 static route.

Use the delete form of this command to remove the description of an IPv6 static route.

Use the show form of this command to view the description of an IPv6 static route.

protocols static route6 next-hop

Configures the next hop for an IPv6 static route.

set protocols static route6 subnet next-hop address [disable | distance distance | interface interface | tag redist-tag | path-monitor monitor monitor-name [policy policy-name [state { compliant | non-compliant }]]]

delete protocols static route6 subnet next-hop address [disable | distance
 interface | tag redist-tag | path-monitor monitor monitor-name [policy
 policy-name [state { compliant | non-compliant }]]

show protocols static route6 subnet next-hop address [disable | distance |
interface | tag redist-tag | path-monitor monitor monitor-name [policy
policy-name [state { compliant | non-compliant }]]

subnet

Multi-node. An IPv6 static route. The format is a destination subnet of the form IPv6address/prefix (h:h:h:h:h:h:h:h:h/x).

You can define multiple static routes by creating multiple *subnet* configuration nodes.

address

The IPv6 address of the next hop router.

disable

Disables the IPv6 static route.

distance

The next-hop distance for this route (1-255). Routes with a smaller distance are selected before those with a larger distance. The default distance is 1.

interface

The outgoing interface used to reach the next-hop address. This interface is needed when the next-hop address is a link-local address (that is, it has a fe80::/64 prefix).

redist-tag

Value to control route redistrbution (1-4294967295). All next-hops for a RIB entry (prefix + distance) must have the same tag.

monitor-name

Name of a Path Monitor instance.

policy-name

Name of a Path Monitor policy.

state

The compliance state:

compliant: All associated Path Monitor policies are compliant.

non-compliant: All associated Path Monitor policies are non-compliant.

Configuration mode

```
protocols {
        static {
                route6 {
                         next-hop {
                                  disable
                                  distance
                                  interface
                                           path-monitor {
                                                   monitor {
                                                            policy {
                                                                     state
                                                            }
                                                    }
                                           }
                                  tag
                         }
                 }
        }
}
```

Use the set form of this command to configure the next hop for an IPv6 static route. Use the delete form of this command to remove the next hop from an IPv6 static route. Use the show form of this command to view the next hop for an IPv6 static route.

protocols static route6 next-hop-routing-instance next-hop

Configures the routing instance (VRF) and next hop for an IPv6 static route.

set protocols static route6 subnet next-hop-routing-instance routing-instance
next-hop ipv6-address [disable | distance distance | interface interface-name
| tag redist-tag | path-monitor monitor monitor-name [policy policy-name [
state { compliant | non-compliant }]]

delete protocols static route6 subnet next-hop-routing-instance routing-instance
next-hop ipv6-address [disable | distance distance | interface interface-name
| tag redist-tag | path-monitor monitor monitor-name [policy policy-name [
state { compliant | non-compliant }]]

show protocols static route6 subnet next-hop-routing-instance routing-instance
next-hop ipv6-address [disable | distance distance | interface interface-name
| tag redist-tag | path-monitor monitor monitor-name [policy policy-name [
state { compliant | non-compliant }]]

subnet

You can define multiple static routes by creating multiple **route** configuration nodes.

routing-instance

Destination routing instance (VRF) for the next-hop address.

ipv6-address

The IPv6 address of the next-hop router.

disable

Disables the static route.

distance

Next-hop distance for this route (1-255). Routes with a smaller distance are selected before those with a larger distance. The default distance is 1.

interface-name

The name of the outgoing interface.

redist-tag

Value to control route redistrbution (1-4294967295). All next-hops for a RIB entry (prefix + distance) must have the same tag.

monitor-name

Name of a Path Monitor instance.

policy-name

Name of a Path Monitor policy.

state

The compliance state:

compliant: All associated Path Monitor policies are compliant.

non-compliant: All associated Path Monitor policies are non-compliant.

Configuration mode

```
tag
}
}
}
```

Use the set form of this command to configure the routing instance and next hop for an IPv6 static route.

Use the delete form of this command to remove the routing instance and next hop from an IPv6 static route.

Use the $_{\rm show}$ form of this command to view the routing instance and next hop for an IPv6 static route.

protocols static route6 unreachable

Configures an unreachable IPv6 static route, a destination for which packets are discarded and replied with an ICMP Type 3 message (destination unreachable).

```
set protocols static route6 subnet unreachable [ tag redist-tag ]
```

delete protocols static route6 subnet unreachable [tag redist-tag]

```
show protocols static route6 subnet unreachable [ tag redist-tag ]
```

subnet

Multi-node. An IPv6 static route. The format is a destination subnet of the form IPv6address/prefix (h:h:h:h:h:h:h:h/x).

You can define multiple static routes by creating multiple route configuration nodes.

redist-tag

Value to control route redistrbution (1-4294967295). All next-hops for a RIB entry (prefix + distance) must have the same tag.

Configuration mode

Use the set form of this command to configure an unreachable IPv6 static route.

Use the delete form of this command to remove an unreachable IPv6 static route.

Use the show form of this command to view an unreachable IPv6 static route.

protocols static table description

Sets the description of an alternate routing table.

set protocols static table table description description

delete protocols static table table description description

show protocols static table table description description

table

Multi-node. An alternate routing table to be used by policy-based routing rules.

description

The description of the static route.

Configuration mode

```
protocols {
    static {
        table table {
            description
        }
    }
}
```

Use this command to configure static routes in an alternate routing table. The alternate routing tables are used with policy-based routing. Refer to *Policy-based Routing Configuration Guide* for information on policy-based routing.

Use the set form of this command to set the description of an alternate routing table.

Use the delete form of this command to remove the description of an alternate routing table.

Use the show form of this command to view the description of in an alternate routing table.

protocols static table interface-route description

Sets the description of an interface-based static route in an alternate routing table.

set protocols static table table interface-route subnet description description

```
delete protocols static table table interface-route subnet description description
```

show protocols static table table interface-route subnet description description

table

Multi-node. An alternate routing table to be used by policy-based routing rules.

subnet

Multi-node. An interface-based static route. The format is a destination subnet of the form *address/prefix* (*x.x.x.xlx*).

You can define multiple interface-based routes by creating multiple **interface-route** configuration nodes.

description

The description of the static route.

Configuration mode

```
protocols {
    static {
        table {
            interface-route {
                desccription
                }
        }
}
```

Use this command to configure interface-based static routes in an alternate routing table. The alternate routing tables are used with policy-based routing. Refer to *Policy-based Routing Configuration Guide* for information on policy-based routing.

Use the set form of this command to set the description of a static router in an alternate routing table.

Use the delete form of this command to remove the description of a static router in an alternate routing table.

Use the show form of this command to view the description of a static router in an alternate routing table.

protocols static table interface-route next-hop-interface

Configures the next-hop interface for an interface-based static route in an alternate routing table.

```
set protocols static table table interface-route subnet next-hop-interface
interface [ disable | distance distance | path-monitor monitor monitor-name [
policy policy-name [ state { compliant | non-compliant } ] ] ]
delete protocols static table table interface-route subnet next-hop-interface
interface [ disable | distance | path-monitor monitor monitor-name [ policy
policy-name [ state { compliant | non-compliant } ] ] ]
```

```
show protocols static table table interface-route subnet next-hop-interface
interface [ disable | distance | path-monitor monitor monitor-name [ policy
policy-name [ state { compliant | non-compliant } ] ]
```

table

Multi-node. An alternate routing table used by policy-based routing rules.

subnet

Multi-node. An interface-based static route. The format is a destination subnet of the form address/prefix (x.x.x.xlx).

You can define multiple interface-based routes by creating multiple **interface-route** configuration nodes.

interface

The next-hop interface.

disable

Disables the interface-based static route.

distance

The next-hop distance for this route (1-255). Routes with a smaller distance are selected before those with a larger distance. The default distance is 1.

monitor-name

Name of a Path Monitor instance.

policy-name

Name of a Path Monitor policy.

state

The compliance state:

compliant: All associated Path Monitor policies are compliant.

non-compliant: All associated Path Monitor policies are non-compliant.

Configuration mode

}

Use this command to configure interface-based static routes in an alternate routing table. The alternate routing tables are used with policy-based routing. Refer to *Policy-based Routing Configuration Guide* for information on policy-based routing.

Use the set form of this command to configure a next-hop interface.

Use the delete form of this command to remove a next-hop interface.

Use the show form of this command to view a next-hop interface.

protocols static table interface-route6 description

Sets the description of an interface-based IPv6 static route in an alternate routing table.

set protocols static table table interface-route6 subnet description description

delete protocols static table table interface-route6 subnet description description

show protocols static table *table* **interface-route6** *subnet* **description** *description*

table

Multi-node. An alternate routing table to be used by policy-based routing rules.

subnet

You can define multiple interface-based routes by creating multiple **interface-route** configuration nodes.

description

The description of the static route.

Configuration mode

```
protocols {
  static {
   table 1
    interface-route6 subnet {
    desccription }
  }
}
```

Use this command to configure interface-based static routes in an alternate routing table. The alternate routing tables are used with policy-based routing. Refer to *Policy-based Routing Configuration Guide* for information on policy-based routing.

Use the set form of this command to set the description of an IPv6 static route in an alternate routing table.

Use the delete form of this command to remove the description of an IPv6 static route in an alternate routing table.

Use the show form of this command to view the description of an IPv6 static route in an alternate routing table.

protocols static table interface-route6 next-hop-interface

Configures the next hop interface for an IPv6 static route in an alternate routing table.

```
set protocols static table table interface-route6 subnet next-hop-interface
interface-name [ disable | distance distance | path-monitor monitor monitor-
name [ policy policy-name [ state { compliant | non-compliant } ] ]
```

delete protocols static table table interface-route6 subnet next-hop-interface interface-name [disable | distance | path-monitor monitor monitor-name [policy policy-name [state { compliant | non-compliant }]]

```
show protocols static table table interface-route6 subnet next-hop-interface
interface-name [ disable | distance | path-monitor monitor monitor-name [
policy policy-name [ state { compliant | non-compliant } ] ]
```

table

Multi-node. An alternate routing table to be used by policy-based routing rules.

subnet

Multi-node. An IPv6 static route. The format is a destination subnet of the form IPv6address/prefix (h:h:h:h:h:h:h:h:h/x).

You can define multiple static routes by creating multiple route6 configuration nodes.

disable

Disables the IPv6 static route.

distance

The next-hop distance for this route. Routes with a smaller distance are selected before those with a larger distance.

monitor-name

Name of a Path Monitor instance.

policy-name

Name of a Path Monitor policy.

state

The compliance state:

compliant: All associated Path Monitor policies are compliant. **non-compliant**: All associated Path Monitor policies are non-compliant.

Configuration mode

```
protocols {
        static {
                 table {
                          interface-route6 {
                                  next-hop-interface {
                                           disable
                                           distance
                                           path-monitor {
                                                    monitor {
                                                            policy {
                                                                     state
                                                             }
                                                    }
                                  }
                          }
                 }
        }
}
```

Use this command to configure IPv6 static routes in an alternate routing table. The alternate routing tables are used with policy-based routing. Refer to *Policy-based Routing Configuration Guide* for information on policy-based routing.

Use the set form of this command to configure the next hop interface for an IPv6 static route in an alternate routing table.

Use the delete form of this command to remove the next hop interface for an IPv6 static route in an alternate routing table.

Use the show form of this command to view the next hop interface for an IPv6 static route in an alternate routing table.

protocols static table route blackhole

Configures a black hole static route in an alternate routing table.

set protocols static table table route subnet blackhole [distance]

delete protocols static table table route subnet blackhole [distance]

show protocols static table table route subnet blackhole [distance]

table table

Multi-node. An alternate routing table to be used by policy-based routing rules.

route subnet

Multi-node. Defines a static route. The format is a destination subnet of the form address/prefix (x.x.x.x/x).

You can define multiple static routes by creating multiple route configuration nodes.

distance distance

The black hole distance for this route. Routes with a smaller distance are selected before those with a larger distance. The distance ranges from 1 through 255. The default distance is 1.

Configuration mode

Use this command to configure a black hole static route in an alternate policy route table. A black hole route is a route for which the system silently discards packets that are matched.

The alternate routing tables are used with policy-based routing. Refer to *Policy-based Routing Configuration Guide* for information on policy-based routing.

Use the set form of this command to configure a black hole static route.

Use the delete form of this command to remove a black hole static route.

Use the show form of this command to view a black hole static route.

protocols static table route description

Sets the description of a static route in an alternate routing table.

set protocols static table table route subnet description description

delete protocols static table table route subnet description description

show protocols static table table route subnet description description

table

Multi-node. An alternate routing table to be used by policy-based routing rules.

subnet

Multi-node. Defines a static route. The format is a destination subnet of the form *address/prefix* (x.x.x.x/x).

You can define multiple static routes by creating multiple **route** configuration nodes.

description

The description of the static route.

Configuration mode

Use this command to configure static routes in an alternate routing table. The alternate routing tables are used with policy-based routing. Refer to *Policy-based Routing Configuration Guide* for information on policy-based routing.

Use the set form of this command to set the description of a route in an alternate routing table.

Use the delete form of this command to remove the description of a static route in an alternate routing table.

Use the show form of this command to view the description of a static route in an alternate routing table.

protocols static table route next-hop

Configures the next hop for a static route in an alternate routing table.

```
set protocols static table table route subnet next-hop address [ disable |
distance distance | path-monitor monitor monitor-name [ policy policy-name [
state { compliant | non-compliant } ] ]
```

delete protocols static table table route subnet next-hop address [disable |
distance [distance] | path-monitor monitor monitor-name [policy policy-name
[state { compliant | non-compliant }]]]

```
show protocols static table table route subnet next-hop address [ disable |
distance [ distance ] | path-monitor monitor monitor-name [ policy policy-name
[ state { compliant | non-compliant } ] ]
```

table

Multi-node. An alternate routing table to be used by policy-based routing rules.

subnet

Multi-node. Defines a static route. The format is a destination subnet of the form address/prefix (x.x.x.x/x).

You can define multiple static routes by creating multiple route configuration nodes.

address

The address of the next-hop router.

disable

Disables the static route.

distance

The next-hop distance for this route. Routes with a smaller distance are selected before those with a larger distance. The distance ranges from 1 through 255. The default distance is 1.

monitor-name

Name of a Path Monitor instance.

policy-name

Name of a Path Monitor policy.

state

The compliance state:

compliant: All associated Path Monitor policies are compliant.

non-compliant: All associated Path Monitor policies are non-compliant.

Configuration mode

```
protocols {
         static {
                 table {
                          route {
                                   next-hop {
                                            disable
                                            distance
                                            path-monitor {
                                                     monitor {
                                                              policy {
                                                                       state
                                                              }
                                                     }
                                            }
                                   }
                          }
                 }
        }
}
```

Use this command to configure static routes in an alternate routing table. The alternate routing tables are used with policy-based routing. Refer to *Policy-based Routing Configuration Guide* for information on policy-based routing.

Use the set form of this command to configure the next hop for a route in an alternate routing table.

Use the delete form of this command to remove the next hop from a static route in an alternate routing table.

Use the show form of this command to view the next hop for a static route in an alternate routing table.

protocols static table route6 blackhole

Configures a black hole static route in an alternate routing table.

set protocols static table table route6 subnet blackhole distance [distance]

delete protocols static table table route6 subnet blackhole distance

show protocols static table table route6 subnet blackhole distance

table table

Multi-node. An alternate routing table to be used by policy-based routing rules.

route6 subnet

Multi-node. An IPv6 static route. The format is a destination subnet of the form IPv6-*address/prefix* (*h*:*h*:*h*:*h*:*h*:*h*:*h*/*x*).

You can define multiple static routes by creating multiple **route** configuration nodes.

blackhole

A destination router that is offline and cannot receive traffic or provide messages to the source of the traffic.

distance distance

The black hole distance for this route. Routes with a smaller distance are selected before those with a larger distance.

Configuration mode

}

Use this command to configure a black hole IPv6 static route in an alternate routing table. A black hole route silently discards packets that are matched.

The alternate routing tables are used with policy-based routing. Refer to *Policy-based Routing Configuration Guide* for information on policy-based routing.

Use the set form of this command to configure a black hole IPv6 static route.

Use the delete form of this command to remove a black hole IPv6 static route.

Use the show form of this command to view a black hole IPv6 static route.

protocols static table route6 description

Sets the description of an IPv6 static route in an alternate routing table.

set protocols static table table route6 subnet description description

delete protocols static table table route6 subnet description description

show protocols static table table route6 subnet description description

table

Multi-node. An alternate routing table to be used by policy-based routing rules.

subnet

Multi-node. An IPv6 static route. The format is a destination subnet of the form IPv6address/prefix (h:h:h:h:h:h:h:h:h/x).

You can define multiple static routes by creating multiple route6 configuration nodes.

description

The description of the static route.

Configuration mode

Use this command to configure IPv6 static routes on the system in an alternate routing table. The alternate routing tables are used with policy-based routing. Refer to *Policy-based Routing Configuration Guide* for information on policy-based routing.

Use the set form of this command to set the description of an IPv6 static route in an alternate routing table.

Use the delete form of this command to remove the description of an IPv6 static route in an alternate routing table.

Use the show form of this command to view the description of an IPv6 static route in an alternate routing table.

protocols static table route6 next-hop

Configures the next hop for an IPv6 static route in an alternate routing table.

```
set protocols static table table route6 subnet next-hop address [ disable |
distance distance | path-monitor monitor monitor-name [ policy policy-name [
state { compliant | non-compliant } ] ]
```

delete protocols static table table route6 subnet next-hop address [disable |
distance | path-monitor monitor monitor-name [policy policy-name [state {
 compliant | non-compliant }]]

```
show protocols static table table route6 subnet next-hop address [ disable |
distance | path-monitor monitor monitor-name [ policy policy-name [ state {
  compliant | non-compliant } ] ]
```

table

Multi-node. An alternate routing table to be used by policy-based routing rules.

subnet

Multi-node. An IPv6 static route. The format is a destination subnet of the form IPv6address/prefix (h:h:h:h:h:h:h:h:h/x).

You can define multiple static routes by creating multiple route6 configuration nodes.

address

The address of the next-hop router.

disable

Disables the IPv6 static route.

distance

The next-hop distance for this route. Routes with a smaller distance are selected before those with a larger distance.

monitor-name

Name of a Path Monitor instance.

policy-name

Name of a Path Monitor policy.

state

The compliance state:

compliant: All associated Path Monitor policies are compliant.

non-compliant: All associated Path Monitor policies are non-compliant.

Configuration mode

```
protocols {
        static {
                table {
                        route6 {
                                next-hop {
                                         disable
                                         distance
                                         interface
                                         path-monitor {
                                                 monitor {
                                                          policy {
                                                                  state
                                                          }
                                                  }
                                         }
                                 }
                        }
                }
        }
}
```

Use this command to configure IPv6 static routes in an alternate routing table. The alternate routing tables are used with policy-based routing. Refer to *Policy-based Routing Configuration Guide* for information on policy-based routing.

Use the set form of this command to configure the next hop for an IPv6 static route in an alternate routing table.

Use the delete form of this command to remove the next hop for an IPv6 static route in an alternate routing table.

Use the show form of this command to view the next hop for an IPv6 static route in an alternate routing table.

Chapter 9. VRF

VRF overview

Several technologies exist to allow multiple scopes, or routing instances, within a single router. For example, some hardware-based routers can be divided into independent virtual routers in which each instance operates as a complete router that uses some of the physical interfaces of the router.

Virtual Routing and Forwarding (VRF) is a technology that controls information flow within a network by partitioning the network and separating Layer 3 traffic into different logical VRF domains. For each VRF domain, the router maintains a separate routing table and Layer 3 forwarding tables and can run separate instances of routing protocols. The separation creates isolated Layer 3 forwarding and routing instances that can support overlapping address spaces without contention. The isolation applies only to Layer 3 routing and forwarding. Layer 2 forwarding is unaffected, and from a device management perspective, the router continues to be a single entity.

To forward traffic, the router selects a VRF routing instance that is based on the input interface (and possibly on policy configuration). Because the interface and Layer 2 information are not strictly partitioned, it is possible to use technologies such as MPLS VPN to multiplex route signaling and traffic for multiple routing instances over the same physical connections or Layer 3 interfaces.

VRF-lite refers to VRF without technologies like MPLS VPN. With VRF-lite, Layer 3 traffic is isolated into separate routing instances. However, connecting routing instances across multiple routers requires a separate physical link for each instance, or the use of Layer 2 trunking technologies, such as VLANs (802.1q), to create separate Layer 2 links over the same physical link.

Note: In this release of the router documentation, VRF refers to VRF-lite, unless otherwise specified, and routing instance refers to VRF routing instance.

The following figure shows a basic VRF-lite configuration with routing instances that are labeled RED and GREEN. The RED and GREEN traffic is completely separated over different interfaces, with no common processing or signaling within the routers. The routers are aware of both routing instances, but each interface carries traffic for only one routing instance.

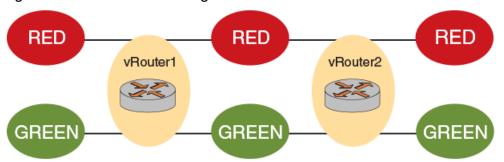


Figure 3. Basic VRF-lite configuration

The following guidelines apply to VRF-lite deployments:

- The VRF-capable routers must be reachable at Layer 3, deploying BGP, OSPF, RIP, or static routes.
- Each routing instance maintains unique routing and forwarding tables.
- One or more Layer 3 interfaces on a router can be assigned to be part of a routing instance.
- Each routing instance can be configured with an IPv4 address family, an IPv6 address family, or both. The routing instance for a received packet is determined based on the VRF index of the interface on which the packet is received.
- Separate routing protocol instances are required for each routing instance.
- Overlapping address spaces can be configured on different routing instances.

A VRF-lite instance can be configured on any interface that is configured for Layer 3. For example, a bridge interface that is associated with a bridge group can have a routing instance because the bridge group is a Layer 3 interface. However, you cannot use VRF-lite with data plane interfaces that are configured as part of a bridge group because they forward traffic only at the Layer 2 level.

Management services

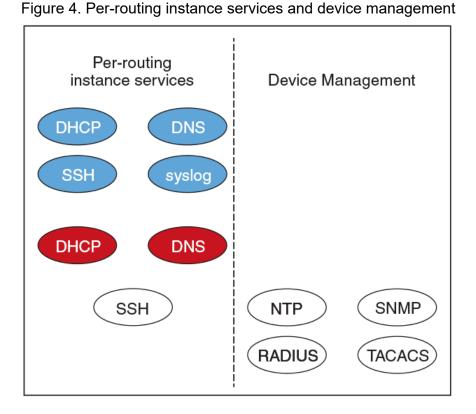
The router supports significant flexibility in configuring management services. Unlike many other VRF implementations, the router does not require that you separate management functions on a dedicated VRF routing instance. Instead, the router offers the ability to enable and disable management services in the context of a particular routing instance (or in some cases, instances).

This approach can be used to restrict management service access to a specific routing instance, if desired, or to create a more-complex access structure, subject to the following restrictions.

The following services must run on a single routing instance:

- SNMP
- RADIUS router

- TACACS+
- NTP


The following services can run on a single routing instance and multiple routing instances:

- DNS
- DHCP
- SSH
- syslog
- Telnet

Services like LLDP, which operate at Layer 2, must be configured on a systemwide basis (not bound to a particular routing instance).

When determining how to set up management services, consider the interfaces you want to use, the functions you want to perform, and whether the service can be applied to individual routing instances. For example, the following figure shows a sample division of management functions in a router with three routing instances:

- BLUE: Configured for DHCP, DNS, SSH, and syslog.
- RED: Configured for DHCP and DNS.
- WHITE: Configured for SSH, RADIUS, TACACS+, SNMP, and NTP.

Feature-specific VRF support

The following sections describe the VRF support for specific router features.

VRF support for DNS

The router uses DNS in both the client (resolver) and server (proxy) roles. You can configure DNS for individual routing instances. If you configure DNS without specifying a routing instance, the default routing instance is used.

For DNS client (resolver) operations, configure DNS name servers when creating a new routing instance to support DNS clients and dynamic synchronization. As a client, a set of name server addresses is used to resolve queried domain names and update DNS records dynamically.

The following example shows how to configure the 10.70.20.23 DNS name server for the default routing instance.

```
vyatta@R1# set system name-server 10.70.20.23
vyatta@R1# commit
vyatta@R1# run show configuration
system {
  name-server 10.70.20.23
}
```

The following example shows the same configuration sequence for the BLUE routing instance.

For server (proxy) operations, if the queried record is not in the cache, the router sends the query to DNS servers that are listed in the name server list for the specified routing instance. This name server list can apply to each DNS forwarding instance when configuring DNS forwarding. If not configured, the routing-instance-specific name servers that are configured are used.

The following example shows how to configure proxy settings (listen-on interface dp0s4 and cache size 1024) for the default routing instance.

```
vyatta@R1# set service dns forwarding listen-on dp0s4
vyatta@R1# set service dns forwarding cache-size 1024
vyatta@R1# commit
```

```
vyatta@R1# run show configuration
service {
    dns {
        forwarding {
            cache-size 1024
            listen-on dp0s3
        }
    }
}
```

The following example shows the same configuration sequence for the BLUE routing instance.

```
vyatta@R1# set routing routing-instance BLUE service dns forwarding
listen-on dp0s4
vyatta@R1# set routing routing-instance BLUE service dns forwarding
cache-size 1024
vyatta@R1# commit
vyatta@R1# run show configuration
routing {
        routing-instance BLUE {
                service {
                        dns {
                                 forwarding {
                                       cache-size 1024
                                         listen-on dp0s4
                                 }
                        }
                }
        }
}
```

For more information about DNS and configuring DNS, see *Basic System Configuration Guide*.

VRF support for DHCP

The implementation of VRF on the router supports DHCPv4 server, DHCPv6 server, DHCPv4 relay, DHCPv6 relay, DHCPv4 client, and DHCPv6 client configurations.

You can configure DHCP on individual routing instances. If you configure DHCP without specifying a routing instance, the default routing instance is used.

The DHCP server recognizes which address pool belongs to which routing instance. You can switch configurations between routing instances. However, you cannot create a DHCP relay that involves interfaces from different routing instances.

The following examples show DHCP configurations that use these values:

- routing instance = BLUE
- ipAddress = 42.42.42.42

The following example shows how to configure DHCP for the default routing instance.

```
vyatta@R1# set service dhcp-server listento interface 'dp0s3'
vyatta@R1# set service dhcp-server shared-network-name CORP subnet
42.42.42.0/24 start 42.42.42.1 stop '42.42.42.253'
vyatta@R1# commit
vyatta@R1# run show configuration
service {
        dhcp-server {
                listento {
                        interface dp0s3
                }
                shared-network-name CORP {
                        subnet 42.42.42.0/24 {
                                 start 42.42.42.1 {
                                         stop 42.42.42.253
                                 }
                        }
                }
        }
}
```

The following example shows the same configuration sequence for the BLUE routing instance.

```
vyatta@R1# set routing routing-instance BLUE service dhcp-server listento
interface 'dp0s4'
vyatta@R1# set routing routing-instance BLUE service dhcp-server
 shared-network-name CORP subnet 42.42.42.0/24 start 42.42.42.1 stop
 '42.42.42.253'
vyatta@R1# commit
vyatta@R1# run show configuration
routing {
        routing-instance BLUE {
                interface dp0s4
                service {
                        dhcp-server {
                                 listento {
                                         interface dp0s4
                                 }
                                 shared-network-name CORP {
                                         subnet 42.42.42.0/24 {
                                                 start 42.42.42.1 {
                                                          stop 42.42.42.253
                                                  }
                                         }
                                 }
                        }
                }
        }
} }
```

For more information about DHCP and configuring DHCP, see *Basic System Configuration Guide*.

VRF support for flow monitoring

NAT is independent of routing instances. However, because interfaces can be bound to a routing instance, if you want a VRF NAT, you must assign NAT rules to the interfaces that make up the routing instance.

VRF support for NTP

NTP must run on a single routing instance. If you configure NTP without specifying a routing instance, the default routing instance is used. You must configure multiple NTP servers one at a time.

The following examples show NTP configurations that use these values:

```
• routing instance = BLUE
```

• IP address of the NTP server = 10.0.0.1

The following example shows how to configure NTP for the default routing instance.

The following example shows the same configuration sequence for the BLUE routing instance.

For more information about NTP and configuring NTP, refer to *Basic System Configuration Guide*.

VRF support for firewall

Firewall configuration is independent of routing instances. However, because interfaces can be bound to a routing instance, if you want to configure a firewall, you must assign firewall rules to the interfaces that make up the routing instance.

VRF support for RADIUS authentication

RADIUS must run on a single routing instance. If you configure a RADIUS server without specifying the routing instance, the RADIUS server starts in the default routing instance. If you specify a nondefault routing instance, you must verify that all servers configured for AAA with the RADIUS server are accessible by way of the same routing instance.

The following examples show excerpts of RADIUS configurations that use these values:

- routing instance = BLUE
- radius-server-address = 42.42.42.42
- secret-code = secured
- port-no = 1820
- timeout = 2

The following example shows how to configure RADIUS for the default routing instance.

The following example shows the same configuration sequence for the BLUE routing instance.

```
vyatta@R1# set routing routing-instance BLUE system login radius-server
42.42.42.42
vyatta@R1# set routing routing-instance BLUE system login radius-server
42.42.42.42 secret secured
vyatta@R1# set routing routing-instance BLUE system login radius-server
42.42.42.42 port 1820
vyatta@R1# set routing routing-instance BLUE system login radius-server
42.42.42.42 timeout 2
```

For more information about RADIUS and configuring RADIUS, see *Basic System Configuration Guide*.

VRF support for TACACS+

TACACS+ must run on a single routing instance. When you configure TACACS+ without specifying an instance, the TACACS+ servers start in the default routing instance. If you specify a nondefault routing instance, you must verify that all TACACS+ servers configured for AAA are reachable from the same routing instance.

The following examples show excerpts of TACACS+ configurations that use these values:

- routing instance = BLUE
- TACACS+ servers 10.10.30.24 (TAC-1) and 10.10.30.25 (TAC-2)
- secret = secured

In the following example, the TACACS+ servers start in the default routing instance.

}

The following example shows how to configure the same servers to run in the BLUE routing instance.

```
vyatta@R1# set routing routing-instance BLUE system login tacplus-server
10.10.30.24 secret secured
vyatta@R1# set routing routing-instance BLUE system login tacplus-server
10.10.30.25 secret secured
#commit
#run sh configuration
routing {
        routing-instance BLUE {
                system {
                        login {
                                 tacplus-server 10.10.30.24 {
                                         secret "*******"
                                 tacplus-server 10.10.30.25 {
                                        secret "*******"
                                 }
                        }
                }
        }
}
```

For more information about TACACS+ and configuring TACACS+, see *Basic System Configuration Guide*.

VRF support for SNMP

DANOS-Vyatta edition supports the implementation of SNMP on a routing instance, which allows the following associations and configurations:

- An SNMP client to be associated with a specific routing instance and handle contextbased access to MIBs.
- An SNMP trap target to be associated with a routing instance for sending SNMP notifications that are specific to the routing instance.
- An SNMP agent to be configured to listen for incoming requests from a specific routing instance.

The SNMP V2 clients are associated with a routing instance by mapping the SNMP community strings with a routing instance, as shown in the following command:

• set service snmp community <comm-string> [context <routing-instance>]

When a V2 request with a community string that is mapped to a routing instance is received, an SNMP agent retrieves MIB information that is specific to the routing instance.

The SNMP V3 clients are associated with a routing instance by specifying the routing instance as context in their requests. An SNMP agent returns context-based MIB information for these requests.

The SNMP V2 and V3 trap targets can be configured to receive routing instance-specific SNMP notifications. Traps to these targets are sent out on the configured routing instance, as shown in the following sample:

```
• set service snmp trap-target <ip-addr> [routing-instance <name>]
```

• set service snmp v3 trap-target <ip-addr> [routing-instance <name>]

When no routing instance is configured for a trap target, traps are sent over a default routing instance.

An SNMP agent can be configured to accept client requests from a specific routing instance:

```
• set service snmp [routing-instance <name>]
```

When no routing instance is configured, an SNMP agent listens for client requests on a default routing instance.

VRF support for SSH

You can configure SSH on any routing instance. If you configure SSH without specifying a routing instance, the default routing instance is used.

The following example shows how to configure SSH for the default routing instance.

```
vyatta@R1# set service ssh listen-address 10.0.0.1
vyatta@R1# set service ssh port 21
vyatta@R1# run show configuration
service {
    ssh {
        listen-address 10.0.0.1
        port 21
        }
}
```

The following example shows the same configuration sequence for the BLUE routing instance.

```
vyatta@Rl# set routing routing-instance BLUE service ssh listen-address
10.0.0.1
vyatta@Rl# set routing routing-instance BLUE service ssh port 21
vyatta@Rl# commit
vyatta@Rl# run show configuration
routing {
    routing-instance BLUE {
        service {
```

```
ssh {
    listen-address 10.0.0.1
    port 21
}
}
```

For more information about SSH and configuring SSH, see *Basic System Configuration Guide*.

VRF support for Telnet

}

You can configure Telnet on any routing instance. If you configure Telnet without specifying a routing instance, the default routing instance is used.

When you configure Telnet service in a routing instance, the external user can connect to the router through a Telnet session by using the configuration parameters for that instance.

The Telnet service can be started with parameters that are specified in the configuration. If parameters are not specified, Telnet service starts on the default port (port 23).

The following example shows how to configure Telnet for the default routing instance.

The following example shows the same configuration sequence for the BLUE routing instance.

```
vyatta@Rl# set routing routing-instance BLUE service telnet listen-address
42.42.42.42
vyatta@Rl# set routing routing-instance BLUE service telnet port 1234
vyatta@Rl# run show configuration
routing {
    routing-instance BLUE {
        service {
            telnet {
                listen-address 42.42.42.42
                port 1234
                }
        }
    }
}
```

}

VRF support for syslog

You can configure syslog on any routing instance. If a routing instance is not specified for logging, the default routing instance is used to access the remote host. You can also configure a facility override value that replaces the facility fields in all log entries that are sent to a remote host. For example, you can specify multiple facility values for a set of log entries that are sent by the router to a log remote host. Before sending the entries to the remote host, the facility values are replaced with the override value.

The following examples show syslog configurations that use these values:

- Routing instance = BLUE
- IP address of the host = 10.10.10.10
- Facility value = auth (Authentication and authorization)
- Level = crit (Critical)

The following example shows how to configure syslog for the default routing instance.

The following example shows the same configuration sequence for the BLUE routing instance.

}

For more information on logging and configuring logging, refer to *Basic System Configuration Guide*.

VRF support for IPsec and GRE

The router provides the following support for IPsec Virtual Tunnel Interface (VTI) and GRE tunnels.

The inner or encapsulated address is configurable for each routing instance, provided that the tunnel interface is bound to a routing instance.

- Assign the IPsec site-to-site configuration to a VTI, which assigns the configuration to a routing-instance.
- Assign the GRE configuration to the interface or interfaces that make up the routing instance.

VRF support for ALG

You can configure ALG on any routing instance. If you configure ALG without specifying a routing instance, the default routing instance is used. You can commit the configuration before configuring a routing instance to an interface.

The following example shows how to configure ALG for the BLUE routing instance.

vyatta@R1# set routing routing-instance BLUE system alg ...

The following example shows how to configure ALG for the default routing instance.

```
vyatta@R1# set system alg ...
```

VRF support for BGP

The implementation of VRF on the router supports BGP.

If you configure BGP without specifying a VRF instance, the router uses the default routing table. BGP supports route-leaking between VRF's by using route target. To configure BGP for a particular VRF routing instance, specify the instance in the command syntax.

Note: You must configure a unique route distinguisher, before you configure BGP with a VRF routing instance. You cannot further modify the route distinguisher configuration if BGP is already configured within a routing instance. Use the following command to configure a route distinguisher:

```
vyatta@R1# set routing routing-instance VRF-NAME
route-distinguisher RDVALUE
```

BGP monitor commands log messages from the default VRF, unless the name of the VRF is specified in the configuration of the routing instance.

The following BGP features are supported only on the default routing instance:

- Extended ASN capability
- Graceful restart
- BGP scan timer
- Cluster ID
- Confederation identifier
- Maximum AS limit

VRF support for OSPF and OSPFv3

The router supports the implementation of OSPF and OSPFv3 on routing instances.

If you configure OSPF or OSPFv3 on the router without specifying a routing instance, the router uses the default routing instance. When configuring OSPF or OSPFv3 for a particular routing instance, you must associate the instance with an OSPF process, and the process ID must be specified in the configuration command.

OSPF configuration

All OSPF configuration commands are supported on routing instances.

In the following example, OSPF area 0 is defined for the default routing instance.

```
vyatta@R1# set protocols ospf area 0
```

In the following example, OSPF area 1 is defined for the RED routing instance, which is associated with OSPF process 1.

vyatta@R1# set routing routing-instance RED protocols ospf process 1 area 1

OSPFv3 configuration

All OSPFv3 configuration commands are supported on routing instances.

Note: In the default routing instance, OSPFv3 supports the default process (configuration without including a process ID) and non-default process (configuration with a process ID). In non-default routing instances, OSPFv3 supports only non-default processes (configuration with a process ID).

The following examples show the syntax for an individual configuration command. For an example of how to configure OSPFv3 processes on routing instances, refer to the section on configuring OSPFv3 on routing instances in *Basic Routing Configuration Guide*.

In the following example, OSPFv3 access list 15 is specified for the default routing instance to filter networks in routing updates.

vyatta@R1# set protocols ospfv3 distribute-list 15

The following example shows how to apply the same configuration to the RED routing instance, which is associated with OSPFv3 process 10.

```
vyatta@R1# set routing routing-instance RED protocols ospfv3 process 10
distribute-list 15
```

VRF support for RIP and RIPng

This section describes VRF support for RIP and RIPng configuration- and operational-mode commands. This section also describes VRF support for monitoring and logging commands.

VRF support for router-mode commands

You can run RIP and RIPng router-mode configuration commands in the context of a routing instance by using the optional **routing routing-instance** *instance-name* keywords and variable. The following examples show how to configure RIP and RIPng in the context of the RED routing instance.

```
routing routing-instance RED protocols rip ...
routing routing-instance RED protocols ripng ...
```

If you do not specify a routing instance, the router applies the configuration to the default routing instance.

Note: An interface belongs to only one routing instance.

VRF support for interface-mode commands

The RIP and RIPng interface-mode configuration commands do not support the **routing routing-instance** *instance-name* keywords and variable because these commands run in the context of the routing instance to which the interfaces belong.

```
interfaces <intf_type> <intf_name> ip rip ...
interfaces <intf_type> <intf_name> ipv6 ripng ...
```

VRF support for operational commands

You can use the optional **routing-instance** *instance-name* keyword and variable with the RIP and RIPng operational commands. If you do not use this optional keyword and variable, the commands run in the context of the default routing instance.

```
show ip rip [routing-instance <instance_name>] ...
reset ip rip [routing-instance <instance_name>] route ...
show ipv6 ripng [routing-instance <instance_name>] ...
```

reset ipv6 ripng [routing-instance <interface_name>] route ...

VRF support for monitoring and logging commands

You can run the RIP and RIPng monitoring and logging commands in the context of a routing instance with the exception of the commands that enable RIB and NSM logging. If you do not use the **routing-instance** *instance-name* keyword and variable, the commands run in the context of the default routing instance.

```
monitor protocol rip [routing-instance <instance_name>]...
[routing routing-instance <instance_name>] protocols rip log ...
monitor protocol ripng [routing-instance <instance_name>] ...
[routing routing-instance <instance_name>] protocols ripng log ...
```

The **rib** and **nsm** logging options are global options and apply to all routing instances. The **rib** and **nsm** logging options cannot be enabled or disabled on a routing instance basis. The following commands apply to all routing instances.

```
monitor protocol rip ... nsm
monitor protocol rip ... rib
protocols rip log nsm
protocols rip log rib
monitor protocol ripng ... nsm
monitor protocol ripng ... rib
protocols ripng log nsm
protocols ripng log rib
```

The output of the following commands displays routing instance information, if relevant.

show monitoring protocols rip show monitoring protocols ripng

VRF support for multicast

You can configure multicast within a routing instance by using the CLI, NetConf, or SNMP. When you configure multicast on the router without specifying a routing instance, the configuration applies to the default routing instance. To configure multicast for a particular routing instance, specify the instance.

All protocol-specific multicast commands can be applied to specific routing instances. For example, the following commands apply the indicated protocols to the RED routing instance.

```
vyatta@R1# set routing routing-instance RED protocols multicast ...
vyatta@R1# set routing routing-instance RED protocols pim ...
vyatta@R1# set routing routing-instance RED protocols pim6 ...
vyatta@R1# set routing routing-instance RED protocols igmp ...
vyatta@R1# set routing routing-instance RED protocols mld ...
vyatta@R1# set routing routing-instance RED protocols mld ...
```

Any multicast configuration that is applied to an interface can be referred to under a routing instance to bind it to that instance, as in the following examples. In these examples, the dp0p161p1 interface is bound to the RED routing instance.

```
vyatta@R1# set routing routing-instance RED interfaces dp0p161p1 ip pim
vyatta@R1# set routing routing-instance RED interfaces dp0p161p1 ip igmp
vyatta@R1# set routing routing-instance RED interfaces dp0p161p1 ip
multicast
vyatta@R1# set routing routing-instance RED interfaces dp0p161p1 ipv6 pim
vyatta@R1# set routing routing-instance RED interfaces dp0p161p1 ipv6 pim
```

You can apply routing instances to **show** commands for supported protocols. The following example shows details about IPv6 MLD groups for the RED routing instance. If no routing instance is specified, the command applies to the default routing instance.

vyatta@vyatta:~\$ show ipv6 mld groups routing-instance RED detail

You can apply routing instances to **reset** commands. The following example shows how to clear IP BGP addresses for routing instance RED. If no routing instance is specified, the command applies to the default routing instance.

vyatta@vyatta:~\$ reset ip bgp routing-instance RED detail

Logging by multicast protocols is configured on a per routing instance basis. If no routing instance is specified, the command applies to the default routing instance. The following example shows how to enable all PIM logs in the RED routing instance.

vyatta@vyatta:~\$ monitor protocol multicast routing-instance RED pim enable

VRF support for BFD

All BFD configuration commands are supported on routing instances.

The following example shows how to configure the BFD source and destination for the default routing instance.

vyatta@R1# set protocols bfd destination 10.16.1.12 source 10.14.10.3

The following example shows how to apply the same configuration to the GREEN routing instance.

```
vyatta@R1# set routing routing-instance GREEN protocols bfd destination
10.16.1.12 source 10.14.10.3
```

VRF support for VRRP

VRF allows a router to support multiple routing tables, one for each VRF routing instance. Virtual Router Redundancy Protocol (VRRP) operates within the context of a single Layer 3 IP subnet, so its operation is not affected by VRF routing instances. Note that VRRP operates appropriately for directly connected interfaces in different routing instances with overlapping address spaces.

The following example shows that the dp0s11 interface is bound to the BLUE routing instance and the dp0s4 interface is bound to the RED routing instance.

```
routing {
 routing-instance BLUE {
   instance-type vrf
   interface dp0s11
   }
  routing-instance RED {
   instance-type vrf
   interface dp0s4
   }
}
```

The following example shows that VRRP for IPv4 is configured with overlapping addresses for the interfaces that were created previously in the RED and BLUE routing instances.

```
dataplane dp0s4 {
 address 11.0.0.2/24
vrrp{
 vrrp-group 1 {
  priority 254
  version 3
  virtual-address 11.0.0.10
 }
}
dataplane dp0s11 {
address 11.0.0.2/24
vrrp{
 vrrp-group 1 {
 priority 254
 version 3
 virtual-address 11.0.0.10
 }
}
```

The following example command sequence shows that VRRP for IPv6 is configured with overlapping addresses for the interfaces that were created previously in the RED and BLUE routing instances.

```
dataplane dp0s4 {
  address 2001::2/64
vrrp{
  vrrp-group 3 {
```

```
priority 254
   version 3
   virtual-address 2001::10
   virtual-address fe80::10
  }
}
}
dataplane dp0s11 {
address 2001::2/64
vrrp{
 vrrp-group 3 {
  priority 254
   version 3
   virtual-address 2001::10
   virtual-address fe80::10
  }
}
}
```

For more information about VRRP, see Basic System Configuration Guide.

VRF support for file transfer client connections

The router uses FTP that contains several commands. If the network configuration supports VRF, the syntax for each command includes optional VRF parameters. The optional VRF parameters specify the non-default VRF that is used when running the command.

FTPs used in commands that support non-default VRFs must access servers on nondefault VRFs. Therefore, commands that support non-default VRF also must also be aware of the VRF parameter that is used in the configuration.

For example, you might have router images stored on a server in the non-default VRF; so, the add system image command must be able to download from that server. The add system image command sytax consists of the routing instance parameter that specifies the non-default VRF that is used. The command follows:

```
vyatta@R1# add system image { iso-filename | [routing-instance <ri-name>]
iso-URL [ username username password password ] }
```

An example of a routing instance follows:

```
vyatta@R1# add system image routing-instance red
http://1.2.3.4/images/vrouter.iso
```

VRF support for **TWAMP**

The router supports the configuration of a TWAMP service for individual routing instances and the operation of the twping TWAMP client in the context of a specified routing instance.

To specify the routing instance in which a TWAMP server runs, use the optional **routing routing**-instance routing-instance keywords and variable. For example, the following command configures a TWAMP server to run in the BLUE routing instance.

\$ set routing routing-instance BLUE service twamp server

If you do not specify a routing instance, the TWAMP server runs in the context of the default routing instance.

TWAMP message logging

TWAMP messages that are logged by twampd in the context of a user-configured routing instance are prepended with the name of the instance, as shown in the following example. In this example, the log message was logged in the context of the GREEN routing instance.

```
Apr 08 07:31:24 vm-next-1 twampd[22829]: [twampd@green.service] StartSessions 1 sessions
```

TWAMP messages that are logged by twampd in the context of the default routing instance do not specify the name of the instance, as shown in the following example.

```
Apr 05 15:32:47 vm-torrance-1 twampd[5149]: StartSessions 1 sessions
```

twping RPC VRF support

When making twping RPC calls, you can specify a routing instance, as specified by the leaf definition of the routing instance in the YANG model.

```
leaf routing-instance {
    description "The routing instance context for this session";
    type routing:routing-instance-name;
    default "default";
}
```

The following is an example of a twping RPC call.

VRF configuration examples

This section presents the following topics:

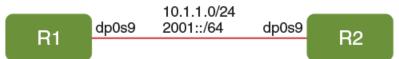
- Binding interfaces to routing instances
- <u>Configuring static routes on a routing instance</u>

- <u>Configuring policy-based routing on a routing instance</u>
- Configuring OSPFv3 on routing instances
- <u>Configuring SNMP on a routing instance</u>

Binding interfaces to routing instances

This example shows how to specify interfaces and bind them to the RED and BLUE routing instances.

Figure 5. RED and BLUE routing instances


Table 8. Binding interfaces to routing instances

Step	Command
Define the dp0s1 and dp0s2 data plane in-	vyatta@R1# set interfaces dataplane dp0s1
terfaces.	vyatta@R1# set interfaces dataplane dp0s2
Bind dp0s1 to the BLUE routing instance	vyatta@Rl# set routing routing-instance BLUE interface dp0s1
and dp0s2 to the RED routing instance.	vyatta@Rl# set routing routing-instance RED interface dp0s2
View the configuration.	<pre>vyatta@Rl# show interfaces interfaces { dataplane dp0s1 dataplane dp0s2 } routing { routing-instance BLUE { interface dp0s1 } routing-instance RED { interface dp0s2 } }</pre>

Configuring static routes on a routing instance

In this example, the R1 router is connected to the R2 router through the dp0s9 interface that is bound to the RED routing instance.

Figure 6. Configuring static routes on a routing instance

The following steps create static routes for the RED routing instance.

Step	Command		
Define the dp0s9 interface and bind it to the RED routing instance.	vyatta@Rl# set interfaces dataplane dp0s9 vyatta@Rl# set routing routing-instance RED interface dp0s9		
Create IPv4 and IPv6 static routes under the RED routing instance.	<pre>vyatta@Rl# set routing routing-instance RED protocols static route 100.1.1.0/24 next-hop 10.1.1.9 vyatta@Rl# set routing routing-instance RED protocols static route6 2001::/64 next-hop 3001::2</pre>		
Create IPv4 and IPv6 interface static routes under the RED routing instance.	vyatta@Rl# set routing routing-instance RED protocols static interface-route 100.1.2.0/24 next-hop-interface dp0s9 vyatta@Rl# set routing routing-instance RED protocols static interface-route6 2002::/64 next-hop-interface dp0s9		
Create IPv4 and IPv6 blackhole static route configurations under routing instance RED.	vyatta@Rl# set routing routing-instance RED protocols static route 100.1.3.0/24 blackhole vyatta@Rl# set routing routing-instance RED protocols static route6 2003::/64 blackhole		
Create unreachable IPv4 and IPv6 static routes under routing instance RED.	vyatta@Rl# set routing routing-instance RED protocols static route 100.1.4.0/24 unreachable vyatta@Rl# set routing routing-instance RED protocols static route6 2004::/64 unreachable		
View the configuration.	<pre>vyatta@Rl# show routing routing { routing-instance RED { interface dp0s9 protocols { static { route 100.1.1.0/24 { next-hop 10.1.1.9 }</pre>		

Table 9. Configuring static routes on a routing instance

The following example shows how to add route leaking between the RED and BLUE routing instances.

Each routing instance operates independently and without knowledge of other routing instances, unless the routes are imported or exported to one another by using inter-VRF route leaking. Inter-VRF route leaking allows leaking of route prefixes from one routing instance to another on the same router. Both dynamic and static route leaking are supported; this example shows how to configure static route leaking.

In the following figure, the R1 router has the dp0s9 interface bound to the RED routing instance and the 10.1.1.0/24 IPv4 and 2001::/64 IPv6 connected networks configured on

RED. The example shows how to install a route in RED with the next hop pointing to the BLUE routing instance.

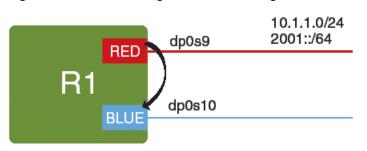
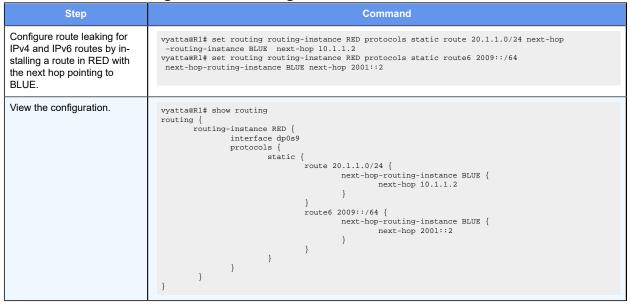
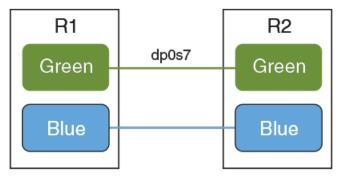



Figure 7. Route leaking between routing instances

Table 10. Route leaking between routing instances



Configuring policy-based routing on a routing instance

In this example, R1 is connected to R2 through the dp0s7 interface that is bound to the GREEN routing instance.

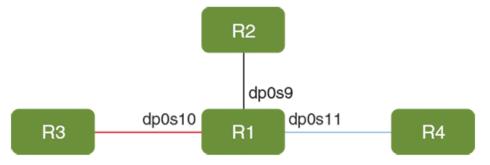
The following steps show how to create an alternate routing table in the GREEN routing instance on dp0s7.

Figure 8. Configuring policy-based routing on a routing instance

To configure policy-based routing on a router perform the following configuration and then reproduce the configuration as described in *Basic Routing Configuration Guide*.

Step	Command
Define the dp0s7 interface and bind it to the GREEN routing instance.	vyatta@Rl# set interfaces dataplane dp0s7 vyatta@Rl# set routing routing-instance GREEN interface dp0s7
Define an interface based static route.	<pre>vyatta@Rl# set routing routing-instance GREEN protocols static table 10 interface-route 20.1.1.0/24 next-hop-interface dp0s7 vyatta@Rl# set routing routing-instance GREEN protocols static table 10 interface-route6 2010::/64 next-hop-interface dp0s7</pre>
Create IPv4 and IPv6 PBR static routes under the GREEN routing instance.	vyatta@R1# set routing routing-instance GREEN protocols static table 10 route 20.1.1.0/24 next-hop 10.1.1.2 interface dp0s7
	vyatta@Rl# set routing routing-instance GREEN protocols static table 10 route6 2010::/64 next-hop 1010::2 interface dp0s7
Create the IPv4 and IPv6 static routes with distance in the GREEN routing instance in the 10 PBR table.	<pre>vyatta@Rl# set routing routing-instance GREEN protocols static table 10 route 20.1.1.0/24 next-hop 10.1.1.2 distance 8 vyatta@Rl# set routing routing-instance GREEN protocols static table 10 route6 2010::/64 next-hop 1010::2 distance 8</pre>
Create IPv4 and IPv6 black hole PBR static route configurations under the GREEN routing instance.	vyatta@Rl# set routing routing-instance GREEN protocols static table 10 route 20.1.1.0/24 blackhole vyatta@Rl# set routing routing-instance GREEN protocols static table 10 route6 2010::/64 blackhole
Create unreachable IPv4 and IPv6 PBR static routes under the GREEN routing instance.	<pre>vyatta@Rl# set routing routing-instance GREEN protocols static route table 10 route 20.1.1.0/24 unreachable vyatta@Rl# set routing routing-instance GREEN protocols static route6 table 10 route6 2010::/64 unreachable</pre>
View the configuration.	<pre>vyatta@Rl# show routing routing { routing-instance GREEN { interface dp0s7 protocols { static { table 10 { interface-route 20.1.1.0/24 {</pre>

Step	Command	
	<pre>route6 2010::/64 { blackhole next-hop 1010::2 { distance 10 interface dp0s5 } unreachable } } }</pre>	


Table 11. Configuring policy-based static routes on a routing instance (continued)

Configuring OSPFv3 on routing instances

This example shows how to configure OSPFv3 on routing instances.

Initially all of the interfaces for the R1 router (dp0s9, dp0s10, and dp0s11) are bound to the default routing instance. This example shows how to modify the configuration as illustrated in the following figure. In the figure, dp0s9 is bound the default routing instance, dp0s10 is bound to the RED routing instance, and dp0s11 is bound to the BLUE routing instance.

Figure 9. Configuring OSPFv3 on routing instances

Table 12. Configuring OSPFv3 on routing instances

Step	Command		
View the configuration before reassigning routing instances.	Codes: S - St Interface dp0s3	192.168.122.204/24 10.1.1.1/24 20.1.1.1/24	
Move dp0s10 to the RED routing instance and dp0s11 to the BLUE routing instance.	vyatta@Rl# set routing routing-instance RED interface dp0s10 vyatta@Rl# set routing routing-instance BLUE interface dp0s11		
Commit the changes and go to Operational mode.	vyatta@R1# co vyatta@R1#exi		
View the changes.	Codes: S - St Interface	show interfaces routing-insta tate, L - Link, u - Up, D - Do IP Address 192.168.122.204/24	

Step	Command		
	dp0s9 10.1.1.1/24 u/u Routing Instance BLUE		
 Create OSPFv3 processes: Under the default routing instance toward R2 (as a non-default OSPFv3 process in the default routing instance). Under the RED routing instance toward R3. Under the BLUE routing instance toward R4. 	<pre>vyatta@Rl# set protocols ospfv3 process 1 router-id 1.1.1.1 vyatta@Rl# set routing routing-instance RED protocols ospfv3 process 2 router-id 2.2.2 vyatta@Rl# set routing routing-instance BLUE protocols ospfv3 process 3 router-id 3.3.3.3</pre>		
Enable OSPFv3 on dp0s9, dp0s10, and dp0s11.	vyatta@Rl# set interfaces dataplane dp0s9 ipv6 ospfv3 process 1 instance-id 0 area 0 vyatta@Rl# set interfaces dataplane dp0s10 ipv6 ospfv3 process 2 instance-id 0 area 0 vyatta@Rl# set interfaces dataplane dp0s11 ipv6 ospfv3 process 3 instance-id 0 area 0		
View the candidate configuration.	<pre>vyatta@Rl# show interfaces</pre>		

Table 12. Configuring OSPFv3 on routing instances (continued)

Configuring SNMP on a routing instance

The following sections provide examples of configuration mode commands.

Associating an SNMP client on a routing instance

The following configuration associates the commA community string with the RED routing instance and the commB community string with the BLUE routing instance. Only one context name can be mapped to a community, but multiple communities can be mapped to the same context name. A community string that is mapped to a context must have a defined view.

Table 13. Associating an	SNMP client on	a routing instance
Table 1017 locolating an		a roating motanoo

Step	Command
Set the SNMP version 1 and version 2 community as commA and context as RED.	vyatta@Rl# set service snmp community commA context red
Set the SNMP version 1 and ver- sion 2 community as commB and	vyatta@R1# set service snmp community commB context blue
context as BLUE.	vyatta@Rl# set service snmp view all oid 1
Associate all views with the com- mA SNMP community.	vyatta@Rl# set service snmp community commA view all
Associate all views with the commB SNMP community.	vyatta@Rl# set service snmp community commB view all
View the configuration.	<pre>vyatta@Rl# show service snmp community community commA { context red view all } community commB { context blue view all } vyatta@vyatta#</pre>

Associating a trap target with a routing instance

The following configuration associates an SNMPv2 trap target with the 1.1.1.1 IP address on the RED routing instance.

|--|

Step	Command
Set the SNMPv2 trap target with the 1.1.1.1 IP address on the RED routing instance.	vyatta@R1# set service snmp v2 trap-target 1.1.1.1 routing-instance red
Define the test community con- figuration node.	vyatta@Rl# set service snmp v2 trap-target 1.1.1.1 community test
Commit the configuration.	vyatta@Rl# commit
View the configuration.	<pre>vyatta@Rl# show service snmp v2 trap-target trap-target 1.1.1.1 { community test routing-instance red } vyatta@vyatta#</pre>

The following configuration associates an SNMPv3 trap target with IP address 2.2.2.2 on the RED routing instance.

	an origination a routing instance
Step	Command
Set the SNMPv3 trap target with the 2.2.2.2 IP address on the RED routing instance.	vyatta@Rl# set service snmp v3 trap-target 2.2.2.2 routing-instance red
Define the usr2 SNMPv3 user.	vyatta@R1# set service snmp v3 trap-target 2.2.2.2 user usr2
Define a cleartext password to authenticate a user.	set service snmp v3 trap-target 2.2.2.2 auth plaintext-key "usr2usr2"
Commit the configuration.	vyatta@Rl# commit
View the configuration.	<pre>vyatta@R1# show service snmp v3 trap-target trap-target 2.2.2.2 { auth {</pre>

 Table 15. Associating an SNMPv3 trap target on a routing instance

Configuring an SNMP agent to listen on a routing instance

The following configuration shows how to configure an SNMP agent to listen for incoming requests from the RED routing instance.

Step	Command
Set an SNMP agent to listen for incoming requests from the RED routing instance.	vyatta@Rl# set service snmp routing-instance red
View the configuration.	vyatta@Rl# show service snmp routing-instance routing-instance red vyatta@vyatta#

Command support for VRF routing instances

VRF allows a router to support multiple routing tables, one for each VRF routing instance. Some commands in this guide support VRF and can be applied to particular routing instances.

Use the guidelines in this section to determine correct syntax when adding VRF routing instances to commands.

Adding a VRF routing instance to a Configuration mode command

For most Configuration mode commands, specify the VRF routing instance at the beginning of a command. Add the appropriate VRF keywords and variable to follow the initial action (**set**, **show**, or **delete**) and before the other keywords and variables in the command.

Configuration mode example: syslog

The following command configures the syslog logging level for the specified syslog host. The command does not include a VRF routing instance, so the command applies to the default routing instance.

The following example shows the same command with the VRF routing instance (GREEN) added. Notice that **routing routing-instance GREEN** has been inserted between the basic action (**set** in the example) and the rest of the command. Most Configuration mode commands follow this convention.

```
vyatta@R1# set routing routing-instance GREEN system syslog host 10.10.10.1
facility all level debug
vyatta@R1# show routing
routing {
    routing-instance GREEN {
             system {
                     syslog {
                            host 11.12.13.2:514 {
                                      facility all {
                                             level debug
                                      }
                              }
                     }
             }
     }
}
```

Configuration mode example: SNMP

Some features, such as SNMP, are not available on a per-routing instance basis but can be bound to a specific routing instance. For these features, the command syntax is an exception to the convention of specifying the routing instance at the beginning of Configuration mode commands.

The following example shows how to configure the SNMPv1 or SNMPv2c community and context for the RED and BLUE routing instances. The first two commands specify the RED routing instance as the context for community A and BLUE routing instance as the context for community B. The subsequent commands complete the configuration.

For more information about configuring SNMP, refer to *Remote Management Configuration Guide*.

```
vyatta@R1# set service snmp community commA context RED
vyatta@R1# set service snmp community commB context BLUE
vyatta@R1# set service snmp view all oid 1
vyatta@R1# set service snmp community commA view all
vyatta@R1# set service snmp community commB view all
vyatta@R1# show service snmp community
community commA {
       context RED
       view all
 }
community commB {
       context BLUE
       view all
}
[edit]
vyatta@vyatta#
```

Adding a VRF routing instance to an Operational mode command

The syntax for adding a VRF routing instance to an Operational mode command varies according to the type of command parameters:

- If the command does not have optional parameters, specify the routing instance at the end of the command.
- If the command has optional parameters, specify the routing instance after the required parameters and before the optional parameters.

Operational mode examples without optional parameters

The following command displays dynamic DNS information for the default routing instance.

vyatta@vyatta:~\$ show dns dynamic status

The following command displays the same information for the specified routing instance (GREEN). The command does not have any optional parameters, so the routing instance is specified at the end of the command.

vyatta@vyatta:~\$ show dns dynamic status routing-instance GREEN

Operational mode example with optional parameters

The following command obtains multicast path information for the specified host (10.33.2.5). A routing instance is not specified, so the command applies to the default routing instance.

```
vyatta@vyatta:~$ mtrace 10.33.2.5 detail
```

The following command obtains multicast path information for the specified host (10.33.2.5) and routing instance (GREEN). Notice that the routing instance is specified before the optional **detail** keyword.

vyatta@vyatta:~\$ mtrace 10.33.2.5 routing-instance GREEN detail

Operational mode example output: SNMP

The following SNMP **show** commands display output for routing instances.

```
vyatta@vyatta:~$ show snmp routing-instance
Routing Instance SNMP Agent is Listening on for Incoming Requests:
Routing-Instance RDID
_____
                       _ _ _ _
                        5
RED
vyatta@vyatta:~$ show snmp community-mapping
SNMPv1/v2c Community/Context Mapping:
Community
                      Context
_____
                        _____
commA
                       'RED'
                        'BLUE '
commB
deva
                       'default'
vyatta@vyatta:~$ show snmp trap-target
SNMPv1/v2c Trap-targets:
Trap-target
                        Port Routing-Instance Community
_____
                         ____
                               _____ ____
                                       'test'
                                'RED'
1.1.1.1
vyatta@vyatta:~$ show snmp v3 trap-target
SNMPv3 Trap-targets:
Trap-target Port Protocol Auth Priv Type EngineID
       Routing-Instance User
                          ____
                                ----- ---- -----
        _____ ___
2.2.2.2
                         '162' 'udp' 'md5 'infor
       'BLUE' 'test'
```

List of commands that support VRF

List of configuration commands

```
policy route pbr <pbr-group> rule <rule-number> routing-instance <value>
protocols static route <prefix> next-hop-routing-instance
 <routing-instance>
protocols static route <prefix> next-hop-routing-instance
 <routing-instance> next-hop <address>
protocols static route <prefix> next-hop-routing-instance
 <routing-instance> next-hop <address> disable
protocols static route <prefix> next-hop-routing-instance
 <routing-instance> next-hop <address> distance <value>
protocols static route <prefix> next-hop-routing-instance
 <routing-instance> next-hop <address> interface <value>
protocols static route6 <prefix> next-hop-routing-instance
 <routing-instance>
protocols static route6 <prefix> next-hop-routing-instance
 <routing-instance> next-hop <address>
protocols static route6 <prefix> next-hop-routing-instance
 <routing-instance> next-hop <address> disable
protocols static route6 <prefix> next-hop-routing-instance
 <routing-instance> next-hop <address> distance <value>
protocols static route6 <prefix> next-hop-routing-instance
 <routing-instance> next-hop <address> interface <value>
routing routing-instance <instance-name>
routing routing-instance <instance-name> description <value>
routing routing-instance <instance-name> instance-type <value>
routing routing-instance <instance-name> interface <name>
routing routing-instance <instance-name> protocols bfd destination
 <address>
routing routing-instance <instance-name> protocols bfd destination
 <address> source <address>
routing routing-instance <instance-name> protocols bfd destination
 <address> source <address> helper-session
routing routing-instance <instance-name> protocols bfd destination
 <address> source <address> template <value>
routing routing-instance <instance-name> protocols bfd log all
routing routing-instance <instance-name> protocols bfd log event
routing routing-instance <instance-name> protocols bfd log ipc-error
routing routing-instance <instance-name> protocols bfd log ipc-event
routing routing-instance <instance-name> protocols bfd log packet
routing routing-instance <instance-name> protocols bfd log session
routing routing-instance <instance-name> protocols bgp <as-number>
routing routing-instance <instance-name> protocols bgp <as-number>
 address-family
routing routing-instance <instance-name> protocols bgp <as-number>
 address-family ipv4-unicast
routing routing-instance <instance-name> protocols bgp <as-number>
 address-family ipv4-unicast aggregate-address <address>
```

```
routing routing-instance <instance-name> protocols bgp <as-number>
 address-family ipv4-unicast aggregate-address <address> as-set
routing routing-instance <instance-name> protocols bgp <as-number>
 address-family ipv4-unicast aggregate-address <address> summary-only
routing routing-instance <instance-name> protocols bgp <as-number>
 address-family ipv4-unicast auto-summary
routing routing-instance <instance-name> protocols bgp <as-number>
 address-family ipv4-unicast network <address>
routing routing-instance <instance-name> protocols bgp <as-number>
 address-family ipv4-unicast network <address> backdoor
routing routing-instance <instance-name> protocols bgp <as-number>
 address-family ipv4-unicast network <address> route-map <value>
routing routing-instance <instance-name> protocols bgp <as-number>
 address-family ipv4-unicast nexthop
routing routing-instance <instance-name> protocols bgp <as-number>
 address-family ipv4-unicast nexthop route-map <value>
routing routing-instance <instance-name> protocols bgp <as-number>
 address-family ipv4-unicast parameters
routing routing-instance <instance-name> protocols bgp <as-number>
 address-family ipv4-unicast parameters dampening
routing routing-instance <instance-name> protocols bgp <as-number>
 address-family ipv4-unicast parameters dampening half-life <value>
routing routing-instance <instance-name> protocols bgp <as-number>
 address-family ipv4-unicast parameters dampening max-suppress-time <value>
routing routing-instance <instance-name> protocols bgp <as-number>
 address-family ipv4-unicast parameters dampening re-use <value>
routing routing-instance <instance-name> protocols bgp <as-number>
 address-family ipv4-unicast parameters dampening start-suppress <value>
routing routing-instance <instance-name> protocols bgp <as-number>
 address-family ipv4-unicast parameters dampening un-reachability-half-life
 <value>
routing routing-instance <instance-name> protocols bgp <as-number>
 address-family ipv4-unicast parameters distance
routing routing-instance <instance-name> protocols bgp <as-number>
 address-family ipv4-unicast parameters distance global
routing routing-instance <instance-name> protocols bgp <as-number>
 address-family ipv4-unicast parameters distance global external <value>
routing routing-instance <instance-name> protocols bgp <as-number>
 address-family ipv4-unicast parameters distance global internal <value>
routing routing-instance <instance-name> protocols bgp <as-number>
 address-family ipv4-unicast parameters distance global local <value>
routing routing-instance <instance-name> protocols bgp <as-number>
 address-family ipv4-unicast parameters network-synchronization
routing routing-instance <instance-name> protocols bgp <as-number>
 address-family ipv4-unicast parameters synchronization
routing routing-instance <instance-name> protocols bgp <as-number>
 address-family ipv4-unicast redistribute
routing routing-instance <instance-name> protocols bgp <as-number>
 address-family ipv4-unicast redistribute connected
routing routing-instance <instance-name> protocols bgp <as-number>
 address-family ipv4-unicast redistribute connected route-map <value>
routing routing-instance <instance-name> protocols bgp <as-number>
 address-family ipv4-unicast redistribute kernel
```

```
routing routing-instance <instance-name> protocols bgp <as-number>
 address-family ipv4-unicast redistribute kernel route-map <value>
routing routing-instance <instance-name> protocols bgp <as-number>
 address-family ipv4-unicast redistribute ospf
routing routing-instance <instance-name> protocols bgp <as-number>
 address-family ipv4-unicast redistribute ospf route-map <value>
routing routing-instance <instance-name> protocols bgp <as-number>
 address-family ipv4-unicast redistribute rip
routing routing-instance <instance-name> protocols bgp <as-number>
 address-family ipv4-unicast redistribute rip route-map <value>
routing routing-instance <instance-name> protocols bgp <as-number>
 address-family ipv4-unicast redistribute static
routing routing-instance <instance-name> protocols bgp <as-number>
 address-family ipv4-unicast redistribute static route-map <value>
routing routing-instance <instance-name> protocols bgp <as-number>
 address-family ipv6-unicast
routing routing-instance <instance-name> protocols bgp <as-number>
 address-family ipv6-unicast aggregate-address <address>
routing routing-instance <instance-name> protocols bgp <as-number>
 address-family ipv6-unicast aggregate-address <address> as-set
routing routing-instance <instance-name> protocols bgp <as-number>
 address-family ipv6-unicast aggregate-address <address> summary-only
routing routing-instance <instance-name> protocols bgp <as-number>
 address-family ipv6-unicast auto-summary
routing routing-instance <instance-name> protocols bgp <as-number>
 address-family ipv6-unicast network <address>
routing routing-instance <instance-name> protocols bgp <as-number>
 address-family ipv6-unicast network <address> backdoor
routing routing-instance <instance-name> protocols bgp <as-number>
 address-family ipv6-unicast network <address> route-map <value>
routing routing-instance <instance-name> protocols bgp <as-number>
 address-family ipv6-unicast nexthop
routing routing-instance <instance-name> protocols bgp <as-number>
 address-family ipv6-unicast nexthop route-map <value>
routing routing-instance <instance-name> protocols bgp <as-number>
 address-family ipv6-unicast parameters
routing routing-instance <instance-name> protocols bgp <as-number>
 address-family ipv6-unicast parameters dampening
routing routing-instance <instance-name> protocols bgp <as-number>
 address-family ipv6-unicast parameters dampening half-life <value>
routing routing-instance <instance-name> protocols bgp <as-number>
 address-family ipv6-unicast parameters dampening max-suppress-time <value>
routing routing-instance <instance-name> protocols bgp <as-number>
 address-family ipv6-unicast parameters dampening re-use <value>
routing routing-instance <instance-name> protocols bgp <as-number>
 address-family ipv6-unicast parameters dampening start-suppress <value>
routing routing-instance <instance-name> protocols bgp <as-number>
 address-family ipv6-unicast parameters dampening un-reachability-half-life
 <value>
routing routing-instance <instance-name> protocols bgp <as-number>
 address-family ipv6-unicast parameters distance
routing routing-instance <instance-name> protocols bgp <as-number>
 address-family ipv6-unicast parameters distance global
```

```
routing routing-instance <instance-name> protocols bgp <as-number>
 address-family ipv6-unicast parameters distance global external <value>
routing routing-instance <instance-name> protocols bgp <as-number>
 address-family ipv6-unicast parameters distance global internal <value>
routing routing-instance <instance-name> protocols bgp <as-number>
 address-family ipv6-unicast parameters distance global local <value>
routing routing-instance <instance-name> protocols bgp <as-number>
 address-family ipv6-unicast parameters network-synchronization
routing routing-instance <instance-name> protocols bgp <as-number>
 address-family ipv6-unicast parameters synchronization
routing routing-instance <instance-name> protocols bgp <as-number>
 address-family ipv6-unicast redistribute
routing routing-instance <instance-name> protocols bgp <as-number>
 address-family ipv6-unicast redistribute connected
routing routing-instance <instance-name> protocols bgp <as-number>
 address-family ipv6-unicast redistribute connected route-map <value>
routing routing-instance <instance-name> protocols bgp <as-number>
 address-family ipv6-unicast redistribute kernel
routing routing-instance <instance-name> protocols bgp <as-number>
 address-family ipv6-unicast redistribute kernel route-map <value>
routing routing-instance <instance-name> protocols bgp <as-number>
 address-family ipv6-unicast redistribute ospfv3
routing routing-instance <instance-name> protocols bgp <as-number>
 address-family ipv6-unicast redistribute ospfv3 route-map <value>
routing routing-instance <instance-name> protocols bgp <as-number>
 address-family ipv6-unicast redistribute ripng
routing routing-instance <instance-name> protocols bgp <as-number>
 address-family ipv6-unicast redistribute ripng route-map <value>
routing routing-instance <instance-name> protocols bgp <as-number>
 address-family ipv6-unicast redistribute static
routing routing-instance <instance-name> protocols bgp <as-number>
 address-family ipv6-unicast redistribute static route-map <value>
routing routing-instance <instance-name> protocols bgp <as-number>
 address-family vpnv4-unicast
routing routing-instance <instance-name> protocols bgp <as-number>
 address-family vpnv4-unicast parameters dampening
routing routing-instance <instance-name> protocols bgp <as-number>
 address-family vpnv4-unicast parameters dampening half-life <value>
routing routing-instance <instance-name> protocols bgp <as-number>
 address-family vpnv4-unicast parameters dampening max-suppress-time
 <value>
routing routing-instance <instance-name> protocols bgp <as-number>
 address-family vpnv4-unicast parameters dampening re-use <value>
routing routing-instance <instance-name> protocols bgp <as-number>
 address-family vpnv4-unicast parameters dampening start-suppress <value>
routing routing-instance <instance-name> protocols bgp
 <as-number> address-family vpnv4-unicast parameters dampening
 un-reachability-half-life <value>
routing routing-instance <instance-name> protocols bgp <as-number>
 address-family vpnv6-unicast
routing routing-instance <instance-name> protocols bgp <as-number>
 address-family vpnv6-unicast parameters dampening
```

routing routing-instance <instance-name> protocols bgp <as-number> address-family vpnv6-unicast parameters dampening half-life <value> routing routing-instance <instance-name> protocols bgp <as-number> address-family vpnv6-unicast parameters dampening max-suppress-time <value> routing routing-instance <instance-name> protocols bgp <as-number> address-family vpnv6-unicast parameters dampening re-use <value> routing routing-instance <instance-name> protocols bgp <as-number> address-family vpnv6-unicast parameters dampening start-suppress <value> routing routing-instance <instance-name> protocols bgp <as-number> address-family vpnv6-unicast parameters dampening un-reachability-half-life <value> routing routing-instance <instance-name> protocols bgp <as-number> log all routing routing-instance <instance-name> protocols bgp <as-number> log bfd routing routing-instance <instance-name> protocols bgp <as-number> log dampening routing routing-instance <instance-name> protocols bgp <as-number> log events routing routing-instance <instance-name> protocols bgp <as-number> log filters routing routing-instance <instance-name> protocols bgp <as-number> log fsm routing routing-instance <instance-name> protocols bgp <as-number> log keepalive routing routing-instance <instance-name> protocols bgp <as-number> log msdp routing routing-instance <instance-name> protocols bgp <as-number> log update all routing routing-instance <instance-name> protocols bgp <as-number> log update in routing routing-instance <instance-name> protocols bgp <as-number> log update out routing routing-instance <instance-name> protocols bgp <as-number> neighbor <address> routing routing-instance <instance-name> protocols bgp <as-number> neighbor <address> address-family routing routing-instance <instance-name> protocols bgp <as-number> neighbor <address> address-family ipv4-labeled-unicast routing routing-instance <instance-name> protocols bgp <as-number> neighbor <address> address-family ipv4-labeled-unicast allowas-in routing routing-instance <instance-name> protocols bgp <as-number> neighbor <address> address-family ipv4-labeled-unicast allowas-in number <value> routing routing-instance <instance-name> protocols bgp <as-number> neighbor <address> address-family ipv4-labeled-unicast attribute-unchanged routing routing-instance <instance-name> protocols bgp <as-number> neighbor <address> address-family ipv4-labeled-unicast attribute-unchanged as-path routing routing-instance <instance-name> protocols bgp <as-number> neighbor <address> address-family ipv4-labeled-unicast attribute-unchanged med routing routing-instance <instance-name> protocols bgp <as-number> neighbor <address> address-family ipv4-labeled-unicast attribute-unchanged next-hop routing routing-instance <instance-name> protocols bgp <as-number> neighbor <address> address-family ipv4-labeled-unicast capability routing routing-instance <instance-name> protocols bgp <as-number> neighbor <address> address-family ipv4-labeled-unicast capability graceful-restart

routing routing-instance <instance-name> protocols bgp <as-number> neighbor <address> address-family ipv4-labeled-unicast capability graceful-restart disable routing routing-instance <instance-name> protocols bgp <as-number> neighbor <address> address-family ipv4-labeled-unicast capability orf routing routing-instance <instance-name> protocols bgp <as-number> neighbor <address> address-family ipv4-labeled-unicast capability orf prefix-list routing routing-instance <instance-name> protocols bgp <as-number> neighbor <address> address-family ipv4-labeled-unicast capability orf prefix-list receive routing routing-instance <instance-name> protocols bgp <as-number> neighbor <address> address-family ipv4-labeled-unicast capability orf prefix-list send routing routing-instance <instance-name> protocols bgp <as-number> neighbor <address> address-family ipv4-labeled-unicast default-originate routing routing-instance <instance-name> protocols bgp <as-number> neighbor <address> address-family ipv4-labeled-unicast default-originate route-map <value> routing routing-instance <instance-name> protocols bgp <as-number> neighbor <address> address-family ipv4-labeled-unicast disable-send-community routing routing-instance <instance-name> protocols bgp <as-number> neighbor <address> address-family ipv4-labeled-unicast disable-send-community extended routing routing-instance <instance-name> protocols bgp <as-number> neighbor <address> address-family ipv4-labeled-unicast disable-send-community standard routing routing-instance <instance-name> protocols bgp <as-number> neighbor <address> address-family ipv4-labeled-unicast distribute-list routing routing-instance <instance-name> protocols bgp <as-number> neighbor <address> address-family ipv4-labeled-unicast distribute-list export <value> routing routing-instance <instance-name> protocols bgp <as-number> neighbor <address> address-family ipv4-labeled-unicast distribute-list import <value> routing routing-instance <instance-name> protocols bgp <as-number> neighbor <address> address-family ipv4-labeled-unicast filter-list routing routing-instance <instance-name> protocols bgp <as-number> neighbor <address> address-family ipv4-labeled-unicast filter-list export <value> routing routing-instance <instance-name> protocols bgp <as-number> neighbor <address> address-family ipv4-labeled-unicast filter-list import <value> routing routing-instance <instance-name> protocols bgp <as-number> neighbor <address> address-family ipv4-labeled-unicast maximum-prefix <address> routing routing-instance <instance-name> protocols bgp <as-number> neighbor <address> address-family ipv4-labeled-unicast maximum-prefix <address> threshold <percentage> routing routing-instance <instance-name> protocols bgp <as-number> neighbor <address> address-family ipv4-labeled-unicast maximum-prefix <address> threshold <percentage> warning-only routing routing-instance <instance-name> protocols bgp <as-number> neighbor <address> address-family ipv4-labeled-unicast maximum-prefix <address> warning-only routing routing-instance <instance-name> protocols bgp <as-number> neighbor <address> address-family ipv4-labeled-unicast nexthop-self

```
routing routing-instance <instance-name> protocols bgp <as-number> neighbor
 <address> address-family ipv4-labeled-unicast peer-group <value>
routing routing-instance <instance-name> protocols bgp <as-number> neighbor
 <address> address-family ipv4-labeled-unicast prefix-list
routing routing-instance <instance-name> protocols bgp <as-number> neighbor
 <address> address-family ipv4-labeled-unicast prefix-list export <value>
routing routing-instance <instance-name> protocols bgp <as-number> neighbor
 <address> address-family ipv4-labeled-unicast prefix-list import <value>
routing routing-instance <instance-name> protocols bgp <as-number> neighbor
 <address> address-family ipv4-labeled-unicast remove-private-as
routing routing-instance <instance-name> protocols bgp <as-number> neighbor
 <address> address-family ipv4-labeled-unicast route-map export <value>
routing routing-instance <instance-name> protocols bgp <as-number> neighbor
 <address> address-family ipv4-labeled-unicast route-map import <value>
routing routing-instance <instance-name> protocols bgp <as-number> neighbor
 <address> address-family ipv4-labeled-unicast route-reflector-client
routing routing-instance <instance-name> protocols bgp <as-number> neighbor
 <address> address-family ipv4-labeled-unicast route-server-client
routing routing-instance <instance-name> protocols bgp <as-number> neighbor
 <address> address-family ipv4-labeled-unicast soft-reconfiguration inbound
routing routing-instance <instance-name> protocols bgp <as-number> neighbor
 <address> address-family ipv4-labeled-unicast unsuppress-map <value>
routing routing-instance <instance-name> protocols bgp <as-number> neighbor
 <address> address-family ipv4-labeled-unicast weight <value>
routing routing-instance <instance-name> protocols bgp <as-number> neighbor
 <address> address-family ipv4-unicast
routing routing-instance <instance-name> protocols bgp <as-number> neighbor
 <address> address-family ipv4-unicast allowas-in
routing routing-instance <instance-name> protocols bgp <as-number> neighbor
 <address> address-family ipv4-unicast allowas-in number <value>
routing routing-instance <instance-name> protocols bgp <as-number> neighbor
 <address> address-family ipv4-unicast as-override
routing routing-instance <instance-name> protocols bgp <as-number> neighbor
 <address> address-family ipv4-unicast attribute-unchanged as-path
routing routing-instance <instance-name> protocols bgp <as-number> neighbor
 <address> address-family ipv4-unicast attribute-unchanged med
routing routing-instance <instance-name> protocols bgp <as-number> neighbor
 <address> address-family ipv4-unicast attribute-unchanged next-hop
routing routing-instance <instance-name> protocols bgp <as-number> neighbor
 <address> address-family ipv4-unicast capability
routing routing-instance <instance-name> protocols bgp <as-number> neighbor
 <address> address-family ipv4-unicast capability graceful-restart
routing routing-instance <instance-name> protocols bgp <as-number> neighbor
 <address> address-family ipv4-unicast capability graceful-restart disable
routing routing-instance <instance-name> protocols bgp <as-number> neighbor
 <address> address-family ipv4-unicast capability orf
routing routing-instance <instance-name> protocols bgp <as-number> neighbor
 <address> address-family ipv4-unicast capability orf prefix-list
routing routing-instance <instance-name> protocols bgp <as-number> neighbor
 <address> address-family ipv4-unicast capability orf prefix-list receive
routing routing-instance <instance-name> protocols bgp <as-number> neighbor
 <address> address-family ipv4-unicast capability orf prefix-list send
```

```
routing routing-instance <instance-name> protocols bgp <as-number> neighbor
 <address> address-family ipv4-unicast default-originate
routing routing-instance <instance-name> protocols bgp <as-number> neighbor
 <address> address-family ipv4-unicast default-originate route-map <value>
routing routing-instance <instance-name> protocols bgp <as-number> neighbor
 <address> address-family ipv4-unicast disable-send-community extended
routing routing-instance <instance-name> protocols bgp <as-number> neighbor
 <address> address-family ipv4-unicast disable-send-community standard
routing routing-instance <instance-name> protocols bgp <as-number> neighbor
 <address> address-family ipv4-unicast distribute-list export <value>
routing routing-instance <instance-name> protocols bgp <as-number> neighbor
 <address> address-family ipv4-unicast distribute-list import <value>
routing routing-instance <instance-name> protocols bgp <as-number> neighbor
 <address> address-family ipv4-unicast filter-list
routing routing-instance <instance-name> protocols bgp <as-number> neighbor
 <address> address-family ipv4-unicast filter-list export <value>
routing routing-instance <instance-name> protocols bgp <as-number> neighbor
 <address> address-family ipv4-unicast filter-list import <value>
routing routing-instance <instance-name> protocols bgp <as-number> neighbor
 <address> address-family ipv4-unicast maximum-prefix <address>
routing routing-instance <instance-name> protocols bgp <as-number> neighbor
 <address> address-family ipv4-unicast maximum-prefix <address> threshold
 <percentage>
routing routing-instance <instance-name> protocols bgp <as-number> neighbor
 <address> address-family ipv4-unicast maximum-prefix <address> threshold
 <percentage> warning-only
routing routing-instance <instance-name> protocols bgp <as-number>
neighbor <address> address-family ipv4-unicast maximum-prefix <address>
warning-only
routing routing-instance <instance-name> protocols bgp <as-number> neighbor
 <address> address-family ipv4-unicast nexthop-self
routing routing-instance <instance-name> protocols bgp <as-number> neighbor
 <address> address-family ipv4-unicast peer-group <value>
routing routing-instance <instance-name> protocols bgp <as-number> neighbor
 <address> address-family ipv4-unicast prefix-list export <value>
routing routing-instance <instance-name> protocols bgp <as-number> neighbor
 <address> address-family ipv4-unicast prefix-list import <value>
routing routing-instance <instance-name> protocols bgp <as-number> neighbor
 <address> address-family ipv4-unicast remove-private-as
routing routing-instance <instance-name> protocols bgp <as-number> neighbor
 <address> address-family ipv4-unicast route-map export <value>
routing routing-instance <instance-name> protocols bgp <as-number> neighbor
 <address> address-family ipv4-unicast route-map import <value>
routing routing-instance <instance-name> protocols bgp <as-number> neighbor
 <address> address-family ipv4-unicast route-reflector-client
routing routing-instance <instance-name> protocols bgp <as-number> neighbor
 <address> address-family ipv4-unicast route-server-client
routing routing-instance <instance-name> protocols bgp <as-number> neighbor
 <address> address-family ipv4-unicast site-of-origin <value>
routing routing-instance <instance-name> protocols bgp <as-number> neighbor
 <address> address-family ipv4-unicast soft-reconfiguration inbound
routing routing-instance <instance-name> protocols bgp <as-number> neighbor
 <address> address-family ipv4-unicast unsuppress-map <value>
```

```
routing routing-instance <instance-name> protocols bgp <as-number> neighbor
 <address> address-family ipv4-unicast weight <value>
routing routing-instance <instance-name> protocols bgp <as-number> neighbor
 <address> address-family ipv6-labeled-unicast
routing routing-instance <instance-name> protocols bgp <as-number> neighbor
 <address> address-family ipv6-labeled-unicast allowas-in
routing routing-instance <instance-name> protocols bgp <as-number> neighbor
 <address> address-family ipv6-labeled-unicast allowas-in number <value>
routing routing-instance <instance-name> protocols bgp <as-number> neighbor
 <address> address-family ipv6-labeled-unicast attribute-unchanged
routing routing-instance <instance-name> protocols bgp <as-number> neighbor
 <address> address-family ipv6-labeled-unicast attribute-unchanged as-path
routing routing-instance <instance-name> protocols bgp <as-number> neighbor
 <address> address-family ipv6-labeled-unicast attribute-unchanged med
routing routing-instance <instance-name> protocols bgp <as-number> neighbor
 <address> address-family ipv6-labeled-unicast attribute-unchanged next-hop
routing routing-instance <instance-name> protocols bgp <as-number> neighbor
 <address> address-family ipv6-labeled-unicast capability
routing routing-instance <instance-name> protocols bgp <as-number> neighbor
 <address> address-family ipv6-labeled-unicast capability graceful-restart
routing routing-instance <instance-name> protocols bgp <as-number> neighbor
 <address> address-family ipv6-labeled-unicast capability graceful-restart
 disable
routing routing-instance <instance-name> protocols bgp <as-number> neighbor
 <address> address-family ipv6-labeled-unicast capability orf
routing routing-instance <instance-name> protocols bgp <as-number> neighbor
 <address> address-family ipv6-labeled-unicast capability orf prefix-list
routing routing-instance <instance-name> protocols bgp <as-number> neighbor
 <address> address-family ipv6-labeled-unicast capability orf prefix-list
 receive
routing routing-instance <instance-name> protocols bgp <as-number> neighbor
 <address> address-family ipv6-labeled-unicast capability orf prefix-list
 send
routing routing-instance <instance-name> protocols bgp <as-number> neighbor
 <address> address-family ipv6-labeled-unicast default-originate
routing routing-instance <instance-name> protocols bgp <as-number> neighbor
 <address> address-family ipv6-labeled-unicast default-originate route-map
 <value>
routing routing-instance <instance-name> protocols bgp <as-number> neighbor
 <address> address-family ipv6-labeled-unicast disable-send-community
routing routing-instance <instance-name> protocols bgp <as-number> neighbor
 <address> address-family ipv6-labeled-unicast disable-send-community
 extended
routing routing-instance <instance-name> protocols bgp <as-number> neighbor
 <address> address-family ipv6-labeled-unicast disable-send-community
 standard
routing routing-instance <instance-name> protocols bgp <as-number> neighbor
 <address> address-family ipv6-labeled-unicast distribute-list
routing routing-instance <instance-name> protocols bgp <as-number> neighbor
 <address> address-family ipv6-labeled-unicast distribute-list export
 <value>
```

```
routing routing-instance <instance-name> protocols bgp <as-number> neighbor
 <address> address-family ipv6-labeled-unicast distribute-list import
 <value>
routing routing-instance <instance-name> protocols bgp <as-number> neighbor
 <address> address-family ipv6-labeled-unicast filter-list
routing routing-instance <instance-name> protocols bgp <as-number> neighbor
 <address> address-family ipv6-labeled-unicast filter-list export <value>
routing routing-instance <instance-name> protocols bgp <as-number> neighbor
 <address> address-family ipv6-labeled-unicast filter-list import <value>
routing routing-instance <instance-name> protocols bgp <as-number> neighbor
 <address> address-family ipv6-labeled-unicast maximum-prefix <address>
routing routing-instance <instance-name> protocols bgp <as-number> neighbor
 <address> address-family ipv6-labeled-unicast maximum-prefix <address>
 threshold <percentage>
routing routing-instance <instance-name> protocols bgp <as-number> neighbor
 <address> address-family ipv6-labeled-unicast maximum-prefix <address>
 threshold <percentage> warning-only
routing routing-instance <instance-name> protocols bgp <as-number> neighbor
 <address> address-family ipv6-labeled-unicast maximum-prefix <address>
 warning-only
routing routing-instance <instance-name> protocols bgp <as-number> neighbor
 <address> address-family ipv6-labeled-unicast nexthop-self
routing routing-instance <instance-name> protocols bgp <as-number> neighbor
 <address> address-family ipv6-labeled-unicast peer-group <value>
routing routing-instance <instance-name> protocols bgp <as-number> neighbor
 <address> address-family ipv6-labeled-unicast prefix-list
routing routing-instance <instance-name> protocols bgp <as-number> neighbor
 <address> address-family ipv6-labeled-unicast prefix-list export <value>
routing routing-instance <instance-name> protocols bgp <as-number> neighbor
 <address> address-family ipv6-labeled-unicast prefix-list import <value>
routing routing-instance <instance-name> protocols bgp <as-number> neighbor
 <address> address-family ipv6-labeled-unicast remove-private-as
routing routing-instance <instance-name> protocols bgp <as-number> neighbor
 <address> address-family ipv6-labeled-unicast route-map export <value>
routing routing-instance <instance-name> protocols bgp <as-number> neighbor
 <address> address-family ipv6-labeled-unicast route-map import <value>
routing routing-instance <instance-name> protocols bgp <as-number> neighbor
 <address> address-family ipv6-labeled-unicast route-reflector-client
routing routing-instance <instance-name> protocols bgp <as-number> neighbor
 <address> address-family ipv6-labeled-unicast route-server-client
routing routing-instance <instance-name> protocols bgp <as-number> neighbor
 <address> address-family ipv6-labeled-unicast soft-reconfiguration inbound
routing routing-instance <instance-name> protocols bgp <as-number> neighbor
 <address> address-family ipv6-labeled-unicast unsuppress-map <value>
routing routing-instance <instance-name> protocols bgp <as-number> neighbor
 <address> address-family ipv6-labeled-unicast weight <value>
routing routing-instance <instance-name> protocols bgp <as-number> neighbor
 <address> address-family ipv6-unicast
routing routing-instance <instance-name> protocols bgp <as-number> neighbor
 <address> address-family ipv6-unicast allowas-in
routing routing-instance <instance-name> protocols bgp <as-number> neighbor
 <address> address-family ipv6-unicast allowas-in number <value>
```

```
routing routing-instance <instance-name> protocols bgp <as-number> neighbor
 <address> address-family ipv6-unicast as-override
routing routing-instance <instance-name> protocols bgp <as-number> neighbor
 <address> address-family ipv6-unicast attribute-unchanged as-path
routing routing-instance <instance-name> protocols bgp <as-number> neighbor
 <address> address-family ipv6-unicast attribute-unchanged med
routing routing-instance <instance-name> protocols bgp <as-number> neighbor
 <address> address-family ipv6-unicast attribute-unchanged next-hop
routing routing-instance <instance-name> protocols bgp <as-number> neighbor
 <address> address-family ipv6-unicast capability
routing routing-instance <instance-name> protocols bgp <as-number> neighbor
 <address> address-family ipv6-unicast capability graceful-restart
routing routing-instance <instance-name> protocols bgp <as-number> neighbor
 <address> address-family ipv6-unicast capability graceful-restart disable
routing routing-instance <instance-name> protocols bgp <as-number> neighbor
 <address> address-family ipv6-unicast capability orf
routing routing-instance <instance-name> protocols bgp <as-number> neighbor
 <address> address-family ipv6-unicast capability orf prefix-list
routing routing-instance <instance-name> protocols bgp <as-number> neighbor
 <address> address-family ipv6-unicast capability orf prefix-list receive
routing routing-instance <instance-name> protocols bgp <as-number> neighbor
 <address> address-family ipv6-unicast capability orf prefix-list send
routing routing-instance <instance-name> protocols bgp <as-number> neighbor
 <address> address-family ipv6-unicast default-originate
routing routing-instance <instance-name> protocols bgp <as-number> neighbor
 <address> address-family ipv6-unicast default-originate route-map <value>
routing routing-instance <instance-name> protocols bgp <as-number> neighbor
 <address> address-family ipv6-unicast disable-send-community extended
routing routing-instance <instance-name> protocols bgp <as-number> neighbor
 <address> address-family ipv6-unicast disable-send-community standard
routing routing-instance <instance-name> protocols bgp <as-number> neighbor
 <address> address-family ipv6-unicast distribute-list
routing routing-instance <instance-name> protocols bgp <as-number> neighbor
 <address> address-family ipv6-unicast distribute-list export <value>
routing routing-instance <instance-name> protocols bgp <as-number> neighbor
 <address> address-family ipv6-unicast distribute-list import <value>
routing routing-instance <instance-name> protocols bgp <as-number> neighbor
 <address> address-family ipv6-unicast filter-list
routing routing-instance <instance-name> protocols bgp <as-number> neighbor
 <address> address-family ipv6-unicast filter-list export <value>
routing routing-instance <instance-name> protocols bgp <as-number> neighbor
 <address> address-family ipv6-unicast filter-list import <value>
routing routing-instance <instance-name> protocols bgp <as-number> neighbor
 <address> address-family ipv6-unicast maximum-prefix <address>
routing routing-instance <instance-name> protocols bgp <as-number> neighbor
 <address> address-family ipv6-unicast maximum-prefix <address> threshold
 <percentage>
routing routing-instance <instance-name> protocols bgp <as-number> neighbor
 <address> address-family ipv6-unicast maximum-prefix <address> threshold
 <percentage> warning-only
routing routing-instance <instance-name> protocols bgp <as-number>
 neighbor <address> address-family ipv6-unicast maximum-prefix <address>
 warning-only
```

```
routing routing-instance <instance-name> protocols bgp <as-number> neighbor
 <address> address-family ipv6-unicast nexthop-self
routing routing-instance <instance-name> protocols bgp <as-number> neighbor
 <address> address-family ipv6-unicast peer-group <value>
routing routing-instance <instance-name> protocols bgp <as-number> neighbor
 <address> address-family ipv6-unicast prefix-list
routing routing-instance <instance-name> protocols bgp <as-number> neighbor
 <address> address-family ipv6-unicast prefix-list export <value>
routing routing-instance <instance-name> protocols bgp <as-number> neighbor
 <address> address-family ipv6-unicast prefix-list import <value>
routing routing-instance <instance-name> protocols bgp <as-number> neighbor
 <address> address-family ipv6-unicast remove-private-as
routing routing-instance <instance-name> protocols bgp <as-number> neighbor
 <address> address-family ipv6-unicast route-map export <value>
routing routing-instance <instance-name> protocols bgp <as-number> neighbor
 <address> address-family ipv6-unicast route-map import <value>
routing routing-instance <instance-name> protocols bgp <as-number> neighbor
 <address> address-family ipv6-unicast route-reflector-client
routing routing-instance <instance-name> protocols bgp <as-number> neighbor
 <address> address-family ipv6-unicast route-server-client
routing routing-instance <instance-name> protocols bgp <as-number> neighbor
 <address> address-family ipv6-unicast site-of-origin <value>
routing routing-instance <instance-name> protocols bgp <as-number> neighbor
 <address> address-family ipv6-unicast soft-reconfiguration inbound
routing routing-instance <instance-name> protocols bgp <as-number> neighbor
 <address> address-family ipv6-unicast unsuppress-map <value>
routing routing-instance <instance-name> protocols bgp <as-number> neighbor
 <address> address-family ipv6-unicast weight <value>
routing routing-instance <instance-name> protocols bgp <as-number> neighbor
 <address> address-family rtfilter-unicast
routing routing-instance <instance-name> protocols bgp <as-number> neighbor
 <address> address-family rtfilter-unicast default-originate
routing routing-instance <instance-name> protocols bgp <as-number> neighbor
 <address> address-family rtfilter-unicast peer-group <value>
routing routing-instance <instance-name> protocols bgp <as-number> neighbor
 <address> address-family rtfilter-unicast route-reflector-client
routing routing-instance <instance-name> protocols bgp <as-number> neighbor
 <address> address-family vpnv4-unicast
routing routing-instance <instance-name> protocols bgp <as-number> neighbor
 <address> address-family vpnv4-unicast allowas-in
routing routing-instance <instance-name> protocols bgp <as-number> neighbor
 <address> address-family vpnv4-unicast allowas-in number <value>
routing routing-instance <instance-name> protocols bgp <as-number> neighbor
 <address> address-family vpnv4-unicast capability graceful-restart
routing routing-instance <instance-name> protocols bgp <as-number> neighbor
 <address> address-family vpnv4-unicast capability graceful-restart disable
routing routing-instance <instance-name> protocols bgp <as-number> neighbor
 <address> address-family vpnv4-unicast distribute-list export <value>
routing routing-instance <instance-name> protocols bgp <as-number> neighbor
 <address> address-family vpnv4-unicast distribute-list import <value>
routing routing-instance <instance-name> protocols bgp <as-number> neighbor
 <address> address-family vpnv4-unicast filter-list
```

routing routing-instance <instance-name> protocols bgp <as-number> neighbor <address> address-family vpnv4-unicast filter-list export <value> routing routing-instance <instance-name> protocols bgp <as-number> neighbor <address> address-family vpnv4-unicast filter-list import <value> routing routing-instance <instance-name> protocols bgp <as-number> neighbor <address> address-family vpnv4-unicast maximum-prefix <address> routing routing-instance <instance-name> protocols bgp <as-number> neighbor <address> address-family vpnv4-unicast maximum-prefix <address> threshold <percentage> routing routing-instance <instance-name> protocols bgp <as-number> neighbor <address> address-family vpnv4-unicast maximum-prefix <address> threshold <percentage> warning-only routing routing-instance <instance-name> protocols bgp <as-number> neighbor <address> address-family vpnv4-unicast maximum-prefix <address> warning-only routing routing-instance <instance-name> protocols bgp <as-number> neighbor <address> address-family vpnv4-unicast peer-group <value> routing routing-instance <instance-name> protocols bgp <as-number> neighbor <address> address-family vpnv4-unicast prefix-list export <value> routing routing-instance <instance-name> protocols bgp <as-number> neighbor <address> address-family vpnv4-unicast prefix-list import <value> routing routing-instance <instance-name> protocols bgp <as-number> neighbor <address> address-family vpnv4-unicast route-map export <value> routing routing-instance <instance-name> protocols bgp <as-number> neighbor <address> address-family vpnv4-unicast route-map import <value> routing routing-instance <instance-name> protocols bgp <as-number> neighbor <address> address-family vpnv4-unicast route-reflector-client routing routing-instance <instance-name> protocols bgp <as-number> neighbor <address> address-family vpnv6-unicast routing routing-instance <instance-name> protocols bgp <as-number> neighbor <address> address-family vpnv6-unicast allowas-in routing routing-instance <instance-name> protocols bgp <as-number> neighbor <address> address-family vpnv6-unicast allowas-in number <value> routing routing-instance <instance-name> protocols bgp <as-number> neighbor <address> address-family vpnv6-unicast capability graceful-restart routing routing-instance <instance-name> protocols bgp <as-number> neighbor <address> address-family vpnv6-unicast capability graceful-restart disable routing routing-instance <instance-name> protocols bgp <as-number> neighbor <address> address-family vpnv6-unicast distribute-list routing routing-instance <instance-name> protocols bgp <as-number> neighbor <address> address-family vpnv6-unicast distribute-list export <value> routing routing-instance <instance-name> protocols bgp <as-number> neighbor <address> address-family vpnv6-unicast distribute-list import <value> routing routing-instance <instance-name> protocols bgp <as-number> neighbor <address> address-family vpnv6-unicast filter-list routing routing-instance <instance-name> protocols bgp <as-number> neighbor <address> address-family vpnv6-unicast filter-list export <value> routing routing-instance <instance-name> protocols bgp <as-number> neighbor <address> address-family vpnv6-unicast filter-list import <value> routing routing-instance <instance-name> protocols bgp <as-number> neighbor <address> address-family vpnv6-unicast maximum-prefix <address>

routing routing-instance <instance-name> protocols bgp <as-number> neighbor <address> address-family vpnv6-unicast maximum-prefix <address> threshold <percentage> routing routing-instance <instance-name> protocols bgp <as-number> neighbor <address> address-family vpnv6-unicast maximum-prefix <address> threshold <percentage> warning-only routing routing-instance <instance-name> protocols bgp <as-number> neighbor <address> address-family vpnv6-unicast maximum-prefix <address> warning-only routing routing-instance <instance-name> protocols bgp <as-number> neighbor <address> address-family vpnv6-unicast peer-group <value> routing routing-instance <instance-name> protocols bgp <as-number> neighbor <address> address-family vpnv6-unicast prefix-list routing routing-instance <instance-name> protocols bgp <as-number> neighbor <address> address-family vpnv6-unicast prefix-list export <value> routing routing-instance <instance-name> protocols bgp <as-number> neighbor <address> address-family vpnv6-unicast prefix-list import <value> routing routing-instance <instance-name> protocols bgp <as-number> neighbor <address> address-family vpnv6-unicast route-map export <value> routing routing-instance <instance-name> protocols bgp <as-number> neighbor <address> address-family vpnv6-unicast route-map import <value> routing routing-instance <instance-name> protocols bgp <as-number> neighbor <address> address-family vpnv6-unicast route-reflector-client routing routing-instance <instance-name> protocols bgp <as-number> neighbor <address> advertisement-interval <value> routing routing-instance <instance-name> protocols bgp <as-number> neighbor <address> as-origination-interval <value> routing routing-instance <instance-name> protocols bgp <as-number> neighbor <address> capability routing routing-instance <instance-name> protocols bgp <as-number> neighbor <address> capability disable-route-refresh routing routing-instance <instance-name> protocols bgp <as-number> neighbor <address> capability dynamic routing routing-instance <instance-name> protocols bgp <as-number> neighbor <address> capability route-refresh routing routing-instance <instance-name> protocols bgp <as-number> neighbor <address> cluster-id <value> routing routing-instance <instance-name> protocols bgp <as-number> neighbor <address> description <value> routing routing-instance <instance-name> protocols bgp <as-number> neighbor <address> disable-capability-negotiation routing routing-instance <instance-name> protocols bgp <as-number> neighbor <address> ebgp-multihop <value> routing routing-instance <instance-name> protocols bgp <as-number> neighbor <address> enforce-multihop routing routing-instance <instance-name> protocols bgp <as-number> neighbor <address> fall-over bfd routing routing-instance <instance-name> protocols bgp <as-number> neighbor <address> interface <ifname> routing routing-instance <instance-name> protocols bgp <as-number> neighbor <address> interface <ifname> vrrp-failover routing routing-instance <instance-name> protocols bgp <as-number> neighbor <address> interface <ifname> vrrp-failover vrrp-group <groupid>

routing routing-instance <instance-name> protocols bgp <as-number> neighbor <address> interface <ifname> vrrp-failover vrrp-group <groupid> med <value> routing routing-instance <instance-name> protocols bgp <as-number> neighbor <address> interface <ifname> vrrp-failover vrrp-group <groupid> prepend-as <value> routing routing-instance <instance-name> protocols bgp <as-number> neighbor <address> interface <ifname> vrrp-failover vrrp-group <groupid> route-map <value> routing routing-instance <instance-name> protocols bgp <as-number> neighbor <address> local-as <as-number> routing routing-instance <instance-name> protocols bgp <as-number> neighbor <address> log all routing routing-instance <instance-name> protocols bgp <as-number> neighbor <address> log bfd routing routing-instance <instance-name> protocols bgp <as-number> neighbor <address> log dampening routing routing-instance <instance-name> protocols bgp <as-number> neighbor <address> log events routing routing-instance <instance-name> protocols bgp <as-number> neighbor <address> log filters routing routing-instance <instance-name> protocols bgp <as-number> neighbor <address> log fsm routing routing-instance <instance-name> protocols bgp <as-number> neighbor <address> log keepalive routing routing-instance <instance-name> protocols bgp <as-number> neighbor <address> log msdp routing routing-instance <instance-name> protocols bgp <as-number> neighbor <address> log update all routing routing-instance <instance-name> protocols bgp <as-number> neighbor <address> log update in routing routing-instance <instance-name> protocols bgp <as-number> neighbor <address> log update out routing routing-instance <instance-name> protocols bgp <as-number> neighbor <address> med-out igp routing routing-instance <instance-name> protocols bgp <as-number> neighbor <address> med-out igp delay-updates routing routing-instance <instance-name> protocols bgp <as-number> neighbor <address> med-out minimum-igp routing routing-instance <instance-name> protocols bgp <as-number> neighbor <address> override-capability routing routing-instance <instance-name> protocols bgp <as-number> neighbor <address> passive routing routing-instance <instance-name> protocols bgp <as-number> neighbor <address> password <value> routing routing-instance <instance-name> protocols bgp <as-number> neighbor <address> port <value> routing routing-instance <instance-name> protocols bgp <as-number> neighbor <address> remote-as <value> routing routing-instance <instance-name> protocols bgp <as-number> neighbor <address> route-map export <value> routing routing-instance <instance-name> protocols bgp <as-number> neighbor <address> route-map import <value>

```
routing routing-instance <instance-name> protocols bgp <as-number> neighbor
 <address> shutdown
routing routing-instance <instance-name> protocols bgp <as-number> neighbor
 <address> strict-capability-match
routing routing-instance <instance-name> protocols bgp <as-number> neighbor
 <address> timers
routing routing-instance <instance-name> protocols bgp <as-number> neighbor
 <address> timers connect <value>
routing routing-instance <instance-name> protocols bgp <as-number> neighbor
 <address> timers holdtime <value>
routing routing-instance <instance-name> protocols bgp <as-number> neighbor
 <address> timers keepalive <value>
routing routing-instance <instance-name> protocols bgp <as-number> neighbor
 <address> ttl-security
routing routing-instance <instance-name> protocols bgp <as-number> neighbor
 <address> ttl-security hops <value>
routing routing-instance <instance-name> protocols bgp <as-number> neighbor
 <address> update-source <value>
routing routing-instance <instance-name> protocols bgp <as-number>
 parameters
routing routing-instance <instance-name> protocols bgp <as-number>
 parameters always-compare-med
routing routing-instance <instance-name> protocols bgp <as-number>
parameters bestpath
routing routing-instance <instance-name> protocols bgp <as-number>
 parameters bestpath as-path
routing routing-instance <instance-name> protocols bgp <as-number>
 parameters bestpath as-path confed
routing routing-instance <instance-name> protocols bgp <as-number>
 parameters bestpath as-path ignore
routing routing-instance <instance-name> protocols bgp <as-number>
parameters bestpath compare-routerid
routing routing-instance <instance-name> protocols bgp <as-number>
parameters bestpath igp-metric-ignore
routing routing-instance <instance-name> protocols bgp <as-number>
 parameters bestpath med
routing routing-instance <instance-name> protocols bgp <as-number>
 parameters bestpath med confed
routing routing-instance <instance-name> protocols bgp <as-number>
 parameters bestpath med confed missing-as-worst
routing routing-instance <instance-name> protocols bgp <as-number>
 parameters bestpath med missing-as-worst
routing routing-instance <instance-name> protocols bgp <as-number>
 parameters confederation
routing routing-instance <instance-name> protocols bgp <as-number>
parameters confederation peers <value>
routing routing-instance <instance-name> protocols bgp <as-number>
 parameters default
routing routing-instance <instance-name> protocols bgp <as-number>
 parameters default local-pref <value>
routing routing-instance <instance-name> protocols bgp <as-number>
parameters deterministic-med
```

```
routing routing-instance <instance-name> protocols bgp <as-number>
parameters enforce-first-as
routing routing-instance <instance-name> protocols bgp <as-number>
parameters log-neighbor-changes
routing routing-instance <instance-name> protocols bgp <as-number>
parameters maximum-paths ebgp <value>
routing routing-instance <instance-name> protocols bgp <as-number>
parameters maximum-paths ibgp <value>
routing routing-instance <instance-name> protocols bgp <as-number>
parameters med-out-delay <value>
routing routing-instance <instance-name> protocols bgp <as-number>
parameters no-client-to-client-reflection all
routing routing-instance <instance-name> protocols bgp <as-number>
parameters no-client-to-client-reflection cluster-id <value>
routing routing-instance <instance-name> protocols bgp <as-number>
parameters no-fast-external-failover
routing routing-instance <instance-name> protocols bgp <as-number>
parameters no-peer-damp-oscillation
routing routing-instance <instance-name> protocols bgp <as-number>
parameters no-rtm
routing routing-instance <instance-name> protocols bgp <as-number>
 parameters router-id <value>
routing routing-instance <instance-name> protocols bgp <as-number>
peer-group <group-name>
routing routing-instance <instance-name> protocols bgp <as-number>
peer-group <group-name> address-family
routing routing-instance <instance-name> protocols bgp <as-number>
peer-group <group-name> address-family ipv4-labeled-unicast
routing routing-instance <instance-name> protocols bgp <as-number>
 peer-group <group-name> address-family ipv4-labeled-unicast allowas-in
routing routing-instance <instance-name> protocols bgp <as-number>
peer-group <group-name> address-family ipv4-labeled-unicast allowas-in
number <value>
routing routing-instance <instance-name> protocols bgp <as-number>
peer-group <group-name> address-family ipv4-labeled-unicast
attribute-unchanged
routing routing-instance <instance-name> protocols bgp <as-number>
peer-group <group-name> address-family ipv4-labeled-unicast
attribute-unchanged as-path
routing routing-instance <instance-name> protocols bgp <as-number>
peer-group <group-name> address-family ipv4-labeled-unicast
attribute-unchanged med
routing routing-instance <instance-name> protocols bgp <as-number>
peer-group <group-name> address-family ipv4-labeled-unicast
attribute-unchanged next-hop
routing routing-instance <instance-name> protocols bgp <as-number>
peer-group <group-name> address-family ipv4-labeled-unicast capability
routing routing-instance <instance-name> protocols bgp <as-number>
peer-group <group-name> address-family ipv4-labeled-unicast capability
graceful-restart
routing routing-instance <instance-name> protocols bgp <as-number>
 peer-group <group-name> address-family ipv4-labeled-unicast capability
graceful-restart disable
```

```
routing routing-instance <instance-name> protocols bgp <as-number>
peer-group <group-name> address-family ipv4-labeled-unicast capability orf
routing routing-instance <instance-name> protocols bgp <as-number>
 peer-group <group-name> address-family ipv4-labeled-unicast capability orf
 prefix-list
routing routing-instance <instance-name> protocols bgp <as-number>
 peer-group <group-name> address-family ipv4-labeled-unicast capability orf
 prefix-list receive
routing routing-instance <instance-name> protocols bgp <as-number>
peer-group <group-name> address-family ipv4-labeled-unicast capability orf
prefix-list send
routing routing-instance <instance-name> protocols bgp <as-number>
peer-group <group-name> address-family ipv4-labeled-unicast
default-originate
routing routing-instance <instance-name> protocols bgp <as-number>
 peer-group <group-name> address-family ipv4-labeled-unicast
default-originate route-map <value>
routing routing-instance <instance-name> protocols bgp <as-number>
 peer-group <group-name> address-family ipv4-labeled-unicast
 disable-send-community
routing routing-instance <instance-name> protocols bgp <as-number>
 peer-group <group-name> address-family ipv4-labeled-unicast
 disable-send-community extended
routing routing-instance <instance-name> protocols bgp <as-number>
 peer-group <group-name> address-family ipv4-labeled-unicast
 disable-send-community standard
routing routing-instance <instance-name> protocols bgp <as-number>
 peer-group <group-name> address-family ipv4-labeled-unicast
distribute-list
routing routing-instance <instance-name> protocols bgp <as-number>
 peer-group <group-name> address-family ipv4-labeled-unicast
distribute-list export <value>
routing routing-instance <instance-name> protocols bgp <as-number>
peer-group <group-name> address-family ipv4-labeled-unicast
 distribute-list import <value>
routing routing-instance <instance-name> protocols bgp <as-number>
 peer-group <group-name> address-family ipv4-labeled-unicast filter-list
routing routing-instance <instance-name> protocols bgp <as-number>
 peer-group <group-name> address-family ipv4-labeled-unicast filter-list
 export <value>
routing routing-instance <instance-name> protocols bgp <as-number>
peer-group <group-name> address-family ipv4-labeled-unicast filter-list
import <value>
routing routing-instance <instance-name> protocols bgp <as-number>
 peer-group <group-name> address-family ipv4-labeled-unicast maximum-prefix
 <address>
routing routing-instance <instance-name> protocols bgp <as-number>
 peer-group <group-name> address-family ipv4-labeled-unicast maximum-prefix
 <address> threshold <percentage>
routing routing-instance <instance-name> protocols bgp <as-number>
 peer-group <group-name> address-family ipv4-labeled-unicast maximum-prefix
 <address> threshold <percentage> warning-only
```

routing routing-instance <instance-name> protocols bgp <as-number> peer-group <group-name> address-family ipv4-labeled-unicast maximum-prefix <address> warning-only routing routing-instance <instance-name> protocols bgp <as-number> peer-group <group-name> address-family ipv4-labeled-unicast nexthop-self routing routing-instance <instance-name> protocols bgp <as-number> peer-group <group-name> address-family ipv4-labeled-unicast prefix-list routing routing-instance <instance-name> protocols bgp <as-number> peer-group <group-name> address-family ipv4-labeled-unicast prefix-list export <value> routing routing-instance <instance-name> protocols bgp <as-number> peer-group <group-name> address-family ipv4-labeled-unicast prefix-list import <value> routing routing-instance <instance-name> protocols bgp <as-number> peer-group <group-name> address-family ipv4-labeled-unicast remove-private-as routing routing-instance <instance-name> protocols bgp <as-number> peer-group <group-name> address-family ipv4-labeled-unicast route-map export <value> routing routing-instance <instance-name> protocols bgp <as-number> peer-group <group-name> address-family ipv4-labeled-unicast route-map import <value> routing routing-instance <instance-name> protocols bgp <as-number> peer-group <group-name> address-family ipv4-labeled-unicast route-reflector-client routing routing-instance <instance-name> protocols bgp <as-number> peer-group <group-name> address-family ipv4-labeled-unicast route-server-client routing routing-instance <instance-name> protocols bgp <as-number> peer-group <group-name> address-family ipv4-labeled-unicast soft-reconfiguration inbound routing routing-instance <instance-name> protocols bgp <as-number> peer-group <group-name> address-family ipv4-labeled-unicast unsuppress-map <value> routing routing-instance <instance-name> protocols bgp <as-number> peer-group <group-name> address-family ipv4-labeled-unicast weight <value> routing routing-instance <instance-name> protocols bgp <as-number> peer-group <group-name> address-family ipv4-unicast routing routing-instance <instance-name> protocols bgp <as-number> peer-group <group-name> address-family ipv4-unicast allowas-in routing routing-instance <instance-name> protocols bgp <as-number> peer-group <group-name> address-family ipv4-unicast allowas-in number <value> routing routing-instance <instance-name> protocols bgp <as-number> peer-group <group-name> address-family ipv4-unicast as-override routing routing-instance <instance-name> protocols bgp <as-number> peer-group <group-name> address-family ipv4-unicast attribute-unchanged as-path routing routing-instance <instance-name> protocols bgp <as-number> peer-group <group-name> address-family ipv4-unicast attribute-unchanged med

routing routing-instance <instance-name> protocols bgp <as-number> peer-group <group-name> address-family ipv4-unicast attribute-unchanged next-hop routing routing-instance <instance-name> protocols bgp <as-number> peer-group <group-name> address-family ipv4-unicast capability routing routing-instance <instance-name> protocols bgp <as-number> peer-group <group-name> address-family ipv4-unicast capability graceful-restart routing routing-instance <instance-name> protocols bgp <as-number> peer-group <group-name> address-family ipv4-unicast capability graceful-restart disable routing routing-instance <instance-name> protocols bgp <as-number> peer-group <group-name> address-family ipv4-unicast capability orf routing routing-instance <instance-name> protocols bgp <as-number> peer-group <group-name> address-family ipv4-unicast capability orf prefix-list routing routing-instance <instance-name> protocols bgp <as-number> peer-group <group-name> address-family ipv4-unicast capability orf prefix-list receive routing routing-instance <instance-name> protocols bgp <as-number> peer-group <group-name> address-family ipv4-unicast capability orf prefix-list send routing routing-instance <instance-name> protocols bgp <as-number> peer-group <group-name> address-family ipv4-unicast default-originate routing routing-instance <instance-name> protocols bgp <as-number> peer-group <group-name> address-family ipv4-unicast default-originate route-map <value> routing routing-instance <instance-name> protocols bgp <as-number> peer-group <group-name> address-family ipv4-unicast disable-send-community extended routing routing-instance <instance-name> protocols bgp <as-number> peer-group <group-name> address-family ipv4-unicast disable-send-community standard routing routing-instance <instance-name> protocols bgp <as-number> peer-group <group-name> address-family ipv4-unicast distribute-list export <value> routing routing-instance <instance-name> protocols bgp <as-number> peer-group <group-name> address-family ipv4-unicast distribute-list import <value> routing routing-instance <instance-name> protocols bgp <as-number> peer-group <group-name> address-family ipv4-unicast filter-list routing routing-instance <instance-name> protocols bgp <as-number> peer-group <group-name> address-family ipv4-unicast filter-list export <value> routing routing-instance <instance-name> protocols bgp <as-number> peer-group <group-name> address-family ipv4-unicast filter-list import <value> routing routing-instance <instance-name> protocols bgp <as-number> peer-group <group-name> address-family ipv4-unicast maximum-prefix <address> routing routing-instance <instance-name> protocols bgp <as-number> peer-group <group-name> address-family ipv4-unicast maximum-prefix <address> threshold <percentage>

routing routing-instance <instance-name> protocols bgp <as-number> peer-group <group-name> address-family ipv4-unicast maximum-prefix <address> threshold <percentage> warning-only routing routing-instance <instance-name> protocols bgp <as-number> peer-group <group-name> address-family ipv4-unicast maximum-prefix <address> warning-only routing routing-instance <instance-name> protocols bgp <as-number> peer-group <group-name> address-family ipv4-unicast nexthop-self routing routing-instance <instance-name> protocols bgp <as-number> peer-group <group-name> address-family ipv4-unicast prefix-list export <value> routing routing-instance <instance-name> protocols bgp <as-number> peer-group <group-name> address-family ipv4-unicast prefix-list import <value> routing routing-instance <instance-name> protocols bgp <as-number> peer-group <group-name> address-family ipv4-unicast remove-private-as routing routing-instance <instance-name> protocols bgp <as-number> peer-group <group-name> address-family ipv4-unicast route-map export <value> routing routing-instance <instance-name> protocols bgp <as-number> peer-group <group-name> address-family ipv4-unicast route-map import <value> routing routing-instance <instance-name> protocols bgp <as-number> peer-group <group-name> address-family ipv4-unicast route-reflector-client routing routing-instance <instance-name> protocols bgp <as-number> peer-group <group-name> address-family ipv4-unicast route-server-client routing routing-instance <instance-name> protocols bgp <as-number> peer-group <group-name> address-family ipv4-unicast site-of-origin <value> routing routing-instance <instance-name> protocols bgp <as-number> peer-group <group-name> address-family ipv4-unicast soft-reconfiguration inbound routing routing-instance <instance-name> protocols bgp <as-number> peer-group <group-name> address-family ipv4-unicast unsuppress-map <value> routing routing-instance <instance-name> protocols bgp <as-number> peer-group <group-name> address-family ipv4-unicast weight <value> routing routing-instance <instance-name> protocols bgp <as-number> peer-group <group-name> address-family ipv6-labeled-unicast routing routing-instance <instance-name> protocols bgp <as-number> peer-group <group-name> address-family ipv6-labeled-unicast allowas-in routing routing-instance <instance-name> protocols bgp <as-number> peer-group <group-name> address-family ipv6-labeled-unicast allowas-in number <value> routing routing-instance <instance-name> protocols bgp <as-number> peer-group <group-name> address-family ipv6-labeled-unicast attribute-unchanged routing routing-instance <instance-name> protocols bgp <as-number> peer-group <group-name> address-family ipv6-labeled-unicast attribute-unchanged as-path routing routing-instance <instance-name> protocols bgp <as-number> peer-group <group-name> address-family ipv6-labeled-unicast attribute-unchanged med

routing routing-instance <instance-name> protocols bgp <as-number> peer-group <group-name> address-family ipv6-labeled-unicast attribute-unchanged next-hop routing routing-instance <instance-name> protocols bgp <as-number> peer-group <group-name> address-family ipv6-labeled-unicast capability routing routing-instance <instance-name> protocols bgp <as-number> peer-group <group-name> address-family ipv6-labeled-unicast capability graceful-restart routing routing-instance <instance-name> protocols bgp <as-number> peer-group <group-name> address-family ipv6-labeled-unicast capability graceful-restart disable routing routing-instance <instance-name> protocols bgp <as-number> peer-group <group-name> address-family ipv6-labeled-unicast capability orf routing routing-instance <instance-name> protocols bgp <as-number> peer-group <group-name> address-family ipv6-labeled-unicast capability orf prefix-list routing routing-instance <instance-name> protocols bgp <as-number> peer-group <group-name> address-family ipv6-labeled-unicast capability orf prefix-list receive routing routing-instance <instance-name> protocols bgp <as-number> peer-group <group-name> address-family ipv6-labeled-unicast capability orf prefix-list send routing routing-instance <instance-name> protocols bgp <as-number> peer-group <group-name> address-family ipv6-labeled-unicast default-originate routing routing-instance <instance-name> protocols bgp <as-number> peer-group <group-name> address-family ipv6-labeled-unicast default-originate route-map <value> routing routing-instance <instance-name> protocols bgp <as-number> peer-group <group-name> address-family ipv6-labeled-unicast disable-send-community routing routing-instance <instance-name> protocols bgp <as-number> peer-group <group-name> address-family ipv6-labeled-unicast disable-send-community extended routing routing-instance <instance-name> protocols bgp <as-number> peer-group <group-name> address-family ipv6-labeled-unicast disable-send-community standard routing routing-instance <instance-name> protocols bgp <as-number> peer-group <group-name> address-family ipv6-labeled-unicast distribute-list routing routing-instance <instance-name> protocols bgp <as-number> peer-group <group-name> address-family ipv6-labeled-unicast distribute-list export <value> routing routing-instance <instance-name> protocols bgp <as-number> peer-group <group-name> address-family ipv6-labeled-unicast distribute-list import <value> routing routing-instance <instance-name> protocols bgp <as-number> peer-group <group-name> address-family ipv6-labeled-unicast filter-list routing routing-instance <instance-name> protocols bgp <as-number> peer-group <group-name> address-family ipv6-labeled-unicast filter-list export <value>

routing routing-instance <instance-name> protocols bgp <as-number> peer-group <group-name> address-family ipv6-labeled-unicast filter-list import <value> routing routing-instance <instance-name> protocols bgp <as-number> peer-group <group-name> address-family ipv6-labeled-unicast maximum-prefix <address> routing routing-instance <instance-name> protocols bgp <as-number> peer-group <group-name> address-family ipv6-labeled-unicast maximum-prefix <address> threshold <percentage> routing routing-instance <instance-name> protocols bgp <as-number> peer-group <group-name> address-family ipv6-labeled-unicast maximum-prefix <address> threshold <percentage> warning-only routing routing-instance <instance-name> protocols bgp <as-number> peer-group <group-name> address-family ipv6-labeled-unicast maximum-prefix <address> warning-only routing routing-instance <instance-name> protocols bgp <as-number> peer-group <group-name> address-family ipv6-labeled-unicast nexthop-self routing routing-instance <instance-name> protocols bgp <as-number> peer-group <group-name> address-family ipv6-labeled-unicast prefix-list routing routing-instance <instance-name> protocols bgp <as-number> peer-group <group-name> address-family ipv6-labeled-unicast prefix-list export <value> routing routing-instance <instance-name> protocols bgp <as-number> peer-group <group-name> address-family ipv6-labeled-unicast prefix-list import <value> routing routing-instance <instance-name> protocols bgp <as-number> peer-group <group-name> address-family ipv6-labeled-unicast remove-private-as routing routing-instance <instance-name> protocols bgp <as-number> peer-group <group-name> address-family ipv6-labeled-unicast route-map export <value> routing routing-instance <instance-name> protocols bgp <as-number> peer-group <group-name> address-family ipv6-labeled-unicast route-map import <value> routing routing-instance <instance-name> protocols bgp <as-number> peer-group <group-name> address-family ipv6-labeled-unicast route-reflector-client routing routing-instance <instance-name> protocols bgp <as-number> peer-group <group-name> address-family ipv6-labeled-unicast route-server-client routing routing-instance <instance-name> protocols bgp <as-number> peer-group <group-name> address-family ipv6-labeled-unicast soft-reconfiguration inbound routing routing-instance <instance-name> protocols bgp <as-number> peer-group <group-name> address-family ipv6-labeled-unicast unsuppress-map <value> routing routing-instance <instance-name> protocols bgp <as-number> peer-group <group-name> address-family ipv6-labeled-unicast weight <value> routing routing-instance <instance-name> protocols bgp <as-number> peer-group <group-name> address-family ipv6-unicast routing routing-instance <instance-name> protocols bgp <as-number> peer-group <group-name> address-family ipv6-unicast allowas-in

routing routing-instance <instance-name> protocols bgp <as-number> peer-group <group-name> address-family ipv6-unicast allowas-in number <value> routing routing-instance <instance-name> protocols bgp <as-number> peer-group <group-name> address-family ipv6-unicast as-override routing routing-instance <instance-name> protocols bgp <as-number> peer-group <group-name> address-family ipv6-unicast attribute-unchanged as-path routing routing-instance <instance-name> protocols bgp <as-number> peer-group <group-name> address-family ipv6-unicast attribute-unchanged med routing routing-instance <instance-name> protocols bgp <as-number> peer-group <group-name> address-family ipv6-unicast attribute-unchanged next-hop routing routing-instance <instance-name> protocols bgp <as-number> peer-group <group-name> address-family ipv6-unicast capability routing routing-instance <instance-name> protocols bgp <as-number> peer-group <group-name> address-family ipv6-unicast capability graceful-restart routing routing-instance <instance-name> protocols bgp <as-number> peer-group <group-name> address-family ipv6-unicast capability graceful-restart disable routing routing-instance <instance-name> protocols bgp <as-number> peer-group <group-name> address-family ipv6-unicast capability orf routing routing-instance <instance-name> protocols bgp <as-number> peer-group <group-name> address-family ipv6-unicast capability orf prefix-list routing routing-instance <instance-name> protocols bgp <as-number> peer-group <group-name> address-family ipv6-unicast capability orf prefix-list receive routing routing-instance <instance-name> protocols bgp <as-number> peer-group <group-name> address-family ipv6-unicast capability orf prefix-list send routing routing-instance <instance-name> protocols bgp <as-number> peer-group <group-name> address-family ipv6-unicast default-originate routing routing-instance <instance-name> protocols bgp <as-number> peer-group <group-name> address-family ipv6-unicast default-originate route-map <value> routing routing-instance <instance-name> protocols bgp <as-number> peer-group <group-name> address-family ipv6-unicast disable-send-community extended routing routing-instance <instance-name> protocols bgp <as-number> peer-group <group-name> address-family ipv6-unicast disable-send-community standard routing routing-instance <instance-name> protocols bgp <as-number> peer-group <group-name> address-family ipv6-unicast distribute-list routing routing-instance <instance-name> protocols bgp <as-number> peer-group <group-name> address-family ipv6-unicast distribute-list export <value> routing routing-instance <instance-name> protocols bgp <as-number> peer-group <group-name> address-family ipv6-unicast distribute-list import <value>

routing routing-instance <instance-name> protocols bgp <as-number> peer-group <group-name> address-family ipv6-unicast filter-list routing routing-instance <instance-name> protocols bgp <as-number> peer-group <group-name> address-family ipv6-unicast filter-list export <value> routing routing-instance <instance-name> protocols bgp <as-number> peer-group <group-name> address-family ipv6-unicast filter-list import <value> routing routing-instance <instance-name> protocols bgp <as-number> peer-group <group-name> address-family ipv6-unicast maximum-prefix <address> routing routing-instance <instance-name> protocols bgp <as-number> peer-group <group-name> address-family ipv6-unicast maximum-prefix <address> threshold <percentage> routing routing-instance <instance-name> protocols bgp <as-number> peer-group <group-name> address-family ipv6-unicast maximum-prefix <address> threshold <percentage> warning-only routing routing-instance <instance-name> protocols bgp <as-number> peer-group <group-name> address-family ipv6-unicast maximum-prefix <address> warning-only routing routing-instance <instance-name> protocols bgp <as-number> peer-group <group-name> address-family ipv6-unicast nexthop-self routing routing-instance <instance-name> protocols bgp <as-number> peer-group <group-name> address-family ipv6-unicast prefix-list routing routing-instance <instance-name> protocols bgp <as-number> peer-group <group-name> address-family ipv6-unicast prefix-list export <value> routing routing-instance <instance-name> protocols bgp <as-number> peer-group <group-name> address-family ipv6-unicast prefix-list import <value> routing routing-instance <instance-name> protocols bgp <as-number> peer-group <group-name> address-family ipv6-unicast remove-private-as routing routing-instance <instance-name> protocols bgp <as-number> peer-group <group-name> address-family ipv6-unicast route-map export <value> routing routing-instance <instance-name> protocols bgp <as-number> peer-group <group-name> address-family ipv6-unicast route-map import <value> routing routing-instance <instance-name> protocols bgp <as-number> peer-group <group-name> address-family ipv6-unicast route-reflector-client routing routing-instance <instance-name> protocols bgp <as-number> peer-group <group-name> address-family ipv6-unicast route-server-client routing routing-instance <instance-name> protocols bgp <as-number> peer-group <group-name> address-family ipv6-unicast site-of-origin <value> routing routing-instance <instance-name> protocols bgp <as-number> peer-group <group-name> address-family ipv6-unicast soft-reconfiguration inbound routing routing-instance <instance-name> protocols bgp <as-number> peer-group <group-name> address-family ipv6-unicast unsuppress-map <value> routing routing-instance <instance-name> protocols bgp <as-number> peer-group <group-name> address-family ipv6-unicast weight <value> routing routing-instance <instance-name> protocols bgp <as-number> peer-group <group-name> address-family rtfilter-unicast

routing routing-instance <instance-name> protocols bgp <as-number> peer-group <group-name> address-family rtfilter-unicast default-originate routing routing-instance <instance-name> protocols bgp <as-number> peer-group <group-name> address-family rtfilter-unicast route-reflector-client routing routing-instance <instance-name> protocols bgp <as-number> peer-group <group-name> address-family vpnv4-unicast routing routing-instance <instance-name> protocols bgp <as-number> peer-group <group-name> address-family vpnv4-unicast allowas-in routing routing-instance <instance-name> protocols bgp <as-number> peer-group <group-name> address-family vpnv4-unicast allowas-in number <value> routing routing-instance <instance-name> protocols bgp <as-number> peer-group <group-name> address-family vpnv4-unicast capability graceful-restart routing routing-instance <instance-name> protocols bgp <as-number> peer-group <group-name> address-family vpnv4-unicast capability graceful-restart disable routing routing-instance <instance-name> protocols bgp <as-number> peer-group <group-name> address-family vpnv4-unicast distribute-list export <value> routing routing-instance <instance-name> protocols bgp <as-number> peer-group <group-name> address-family vpnv4-unicast distribute-list import <value> routing routing-instance <instance-name> protocols bgp <as-number> peer-group <group-name> address-family vpnv4-unicast filter-list routing routing-instance <instance-name> protocols bgp <as-number> peer-group <group-name> address-family vpnv4-unicast filter-list export <value> routing routing-instance <instance-name> protocols bgp <as-number> peer-group <group-name> address-family vpnv4-unicast filter-list import <value> routing routing-instance <instance-name> protocols bgp <as-number> peer-group <group-name> address-family vpnv4-unicast maximum-prefix <address> routing routing-instance <instance-name> protocols bgp <as-number> peer-group <group-name> address-family vpnv4-unicast maximum-prefix <address> threshold <percentage> routing routing-instance <instance-name> protocols bgp <as-number> peer-group <group-name> address-family vpnv4-unicast maximum-prefix <address> threshold <percentage> warning-only routing routing-instance <instance-name> protocols bgp <as-number> peer-group <group-name> address-family vpnv4-unicast maximum-prefix <address> warning-only routing routing-instance <instance-name> protocols bgp <as-number> peer-group <group-name> address-family vpnv4-unicast prefix-list export <value> routing routing-instance <instance-name> protocols bgp <as-number> peer-group <group-name> address-family vpnv4-unicast prefix-list import <value> routing routing-instance <instance-name> protocols bgp <as-number> peer-group <group-name> address-family vpnv4-unicast route-map export <value>

```
routing routing-instance <instance-name> protocols bgp <as-number>
peer-group <group-name> address-family vpnv4-unicast route-map import
 <value>
routing routing-instance <instance-name> protocols bgp
 <as-number> peer-group <group-name> address-family vpnv4-unicast
route-reflector-client
routing routing-instance <instance-name> protocols bgp <as-number>
 peer-group <group-name> address-family vpnv6-unicast
routing routing-instance <instance-name> protocols bgp <as-number>
peer-group <group-name> address-family vpnv6-unicast allowas-in
routing routing-instance <instance-name> protocols bgp <as-number>
peer-group <group-name> address-family vpnv6-unicast allowas-in number
 <value>
routing routing-instance <instance-name> protocols bgp <as-number>
 peer-group <group-name> address-family vpnv6-unicast capability
 graceful-restart
routing routing-instance <instance-name> protocols bgp <as-number>
 peer-group <group-name> address-family vpnv6-unicast capability
 graceful-restart disable
routing routing-instance <instance-name> protocols bgp <as-number>
peer-group <group-name> address-family vpnv6-unicast distribute-list
routing routing-instance <instance-name> protocols bgp <as-number>
peer-group <group-name> address-family vpnv6-unicast distribute-list
 export <value>
routing routing-instance <instance-name> protocols bgp <as-number>
 peer-group <group-name> address-family vpnv6-unicast distribute-list
 import <value>
routing routing-instance <instance-name> protocols bgp <as-number>
 peer-group <group-name> address-family vpnv6-unicast filter-list
routing routing-instance <instance-name> protocols bgp <as-number>
peer-group <group-name> address-family vpnv6-unicast filter-list export
 <value>
routing routing-instance <instance-name> protocols bgp <as-number>
peer-group <group-name> address-family vpnv6-unicast filter-list import
 <value>
routing routing-instance <instance-name> protocols bgp <as-number>
 peer-group <group-name> address-family vpnv6-unicast maximum-prefix
 <address>
routing routing-instance <instance-name> protocols bgp <as-number>
 peer-group <group-name> address-family vpnv6-unicast maximum-prefix
 <address> threshold <percentage>
routing routing-instance <instance-name> protocols bgp <as-number>
peer-group <group-name> address-family vpnv6-unicast maximum-prefix
 <address> threshold <percentage> warning-only
routing routing-instance <instance-name> protocols bgp <as-number>
peer-group <group-name> address-family vpnv6-unicast maximum-prefix
 <address> warning-only
routing routing-instance <instance-name> protocols bgp <as-number>
peer-group <group-name> address-family vpnv6-unicast prefix-list
routing routing-instance <instance-name> protocols bgp <as-number>
 peer-group <group-name> address-family vpnv6-unicast prefix-list export
 <value>
```

```
routing routing-instance <instance-name> protocols bgp <as-number>
peer-group <group-name> address-family vpnv6-unicast prefix-list import
 <value>
routing routing-instance <instance-name> protocols bgp <as-number>
peer-group <group-name> address-family vpnv6-unicast route-map export
 <value>
routing routing-instance <instance-name> protocols bgp <as-number>
 peer-group <group-name> address-family vpnv6-unicast route-map import
 <value>
routing routing-instance <instance-name> protocols bgp
 <as-number> peer-group <group-name> address-family vpnv6-unicast
 route-reflector-client
routing routing-instance <instance-name> protocols bgp <as-number>
 peer-group <group-name> advertisement-interval <value>
routing routing-instance <instance-name> protocols bgp <as-number>
peer-group <group-name> as-origination-interval <value>
routing routing-instance <instance-name> protocols bgp <as-number>
peer-group <group-name> capability
routing routing-instance <instance-name> protocols bgp <as-number>
peer-group <group-name> capability disable-route-refresh
routing routing-instance <instance-name> protocols bgp <as-number>
 peer-group <group-name> capability dynamic
routing routing-instance <instance-name> protocols bgp <as-number>
peer-group <group-name> capability route-refresh
routing routing-instance <instance-name> protocols bgp <as-number>
 peer-group <group-name> cluster-id <value>
routing routing-instance <instance-name> protocols bgp <as-number>
 peer-group <group-name> description <value>
routing routing-instance <instance-name> protocols bgp <as-number>
 peer-group <group-name> disable-capability-negotiation
routing routing-instance <instance-name> protocols bgp <as-number>
peer-group <group-name> ebgp-multihop <value>
routing routing-instance <instance-name> protocols bgp <as-number>
peer-group <group-name> enforce-multihop
routing routing-instance <instance-name> protocols bgp <as-number>
 peer-group <group-name> interface <ifname>
routing routing-instance <instance-name> protocols bgp <as-number>
 peer-group <group-name> interface <ifname> vrrp-failover
routing routing-instance <instance-name> protocols bgp <as-number>
 peer-group <group-name> interface <ifname> vrrp-failover vrrp-group
 <groupid>
routing routing-instance <instance-name> protocols bgp <as-number>
peer-group <group-name> interface <ifname> vrrp-failover vrrp-group
 <groupid> med <value>
routing routing-instance <instance-name> protocols bgp <as-number>
peer-group <group-name> interface <ifname> vrrp-failover vrrp-group
 <groupid> prepend-as <value>
routing routing-instance <instance-name> protocols bgp <as-number>
peer-group <group-name> interface <ifname> vrrp-failover vrrp-group
 <groupid> route-map <value>
routing routing-instance <instance-name> protocols bgp <as-number>
peer-group <group-name> local-as <as-number>
```

```
routing routing-instance <instance-name> protocols bgp <as-number>
peer-group <group-name> med-out igp
routing routing-instance <instance-name> protocols bgp <as-number>
peer-group <group-name> med-out igp delay-updates
routing routing-instance <instance-name> protocols bgp <as-number>
 peer-group <group-name> med-out minimum-igp
routing routing-instance <instance-name> protocols bgp <as-number>
 peer-group <group-name> override-capability
routing routing-instance <instance-name> protocols bgp <as-number>
peer-group <group-name> passive
routing routing-instance <instance-name> protocols bgp <as-number>
peer-group <group-name> password <value>
routing routing-instance <instance-name> protocols bgp <as-number>
 peer-group <group-name> port <value>
routing routing-instance <instance-name> protocols bgp <as-number>
peer-group <group-name> remote-as <value>
routing routing-instance <instance-name> protocols bgp <as-number>
peer-group <group-name> shutdown
routing routing-instance <instance-name> protocols bgp <as-number>
peer-group <group-name> strict-capability-match
routing routing-instance <instance-name> protocols bgp <as-number>
 peer-group <group-name> timers
routing routing-instance <instance-name> protocols bgp <as-number>
peer-group <group-name> timers connect <value>
routing routing-instance <instance-name> protocols bgp <as-number>
peer-group <group-name> timers holdtime <value>
routing routing-instance <instance-name> protocols bgp <as-number>
peer-group <group-name> timers keepalive <value>
routing routing-instance <instance-name> protocols bgp <as-number>
 peer-group <group-name> ttl-security
routing routing-instance <instance-name> protocols bgp <as-number>
peer-group <group-name> ttl-security hops <value>
routing routing-instance <instance-name> protocols bgp <as-number>
peer-group <group-name> update-source <value>
routing routing-instance <instance-name> protocols ecmp disable
routing routing-instance <instance-name> protocols ecmp maximum-paths
 <value>
routing routing-instance <instance-name> protocols igmp limit <value>
routing routing-instance <instance-name> protocols igmp limit-exception
 <value>
routing routing-instance <instance-name> protocols igmp log all
routing routing-instance <instance-name> protocols igmp log decode
routing routing-instance <instance-name> protocols igmp log encode
routing routing-instance <instance-name> protocols igmp log events
routing routing-instance <instance-name> protocols igmp log fsm
routing routing-instance <instance-name> protocols igmp log tib
routing routing-instance <instance-name> protocols igmp ssm-map
routing routing-instance <instance-name> protocols igmp ssm-map static
access-list <access-list-number>
routing routing-instance <instance-name> protocols igmp ssm-map static
 access-list <access-list-number> source <value>
routing routing-instance <instance-name> protocols mld limit <value>
```

```
routing routing-instance <instance-name> protocols mld limit-exception
 <value>
routing routing-instance <instance-name> protocols mld log all
routing routing-instance <instance-name> protocols mld log decode
routing routing-instance <instance-name> protocols mld log encode
routing routing-instance <instance-name> protocols mld log events
routing routing-instance <instance-name> protocols mld log fsm
routing routing-instance <instance-name> protocols mld log tib
routing routing-instance <instance-name> protocols mld ssm-map
routing routing-instance <instance-name> protocols mld ssm-map static
 access-list <access-list-number>
routing routing-instance <instance-name> protocols mld ssm-map static
 access-list <access-list-number> source <value>
routing routing-instance <instance-name> protocols msdp export access-list
 <value>
routing routing-instance <instance-name> protocols msdp export rp-list
 <value>
routing routing-instance <instance-name> protocols msdp import access-list
 <value>
routing routing-instance <instance-name> protocols msdp import rp-list
 <value>
routing routing-instance <instance-name> protocols msdp log <value>
routing routing-instance <instance-name> protocols msdp mesh-group <name>
routing routing-instance <instance-name> protocols msdp mesh-group <name>
peer <value>
routing routing-instance <instance-name> protocols msdp originated-id
 <value>
routing routing-instance <instance-name> protocols msdp peer <address>
routing routing-instance <instance-name> protocols msdp peer <address>
 connect-retry <value>
routing routing-instance <instance-name> protocols msdp peer <address>
default-peer
routing routing-instance <instance-name> protocols msdp peer <address>
default-peer prefix-list <value>
routing routing-instance <instance-name> protocols msdp peer <address>
 default-peer priority <value>
routing routing-instance <instance-name> protocols msdp peer <address>
 export access-list <value>
routing routing-instance <instance-name> protocols msdp peer <address>
 export rp-list <value>
routing routing-instance <instance-name> protocols msdp peer <address>
holdtime <value>
routing routing-instance <instance-name> protocols msdp peer <address>
 import access-list <value>
routing routing-instance <instance-name> protocols msdp peer <address>
 import rp-list <value>
routing routing-instance <instance-name> protocols msdp peer <address>
keepalive <value>
routing routing-instance <instance-name> protocols msdp peer <address>
 local-address <value>
routing routing-instance <instance-name> protocols msdp peer <address>
password <value>
```

routing routing-instance <instance-name> protocols msdp peer <address> sa-limit <value> routing routing-instance <instance-name> protocols msdp peer <address> shutdown routing routing-instance <instance-name> protocols msdp peer-group <name> routing routing-instance <instance-name> protocols msdp peer-group <name> connect-retry <value> routing routing-instance <instance-name> protocols msdp peer-group <name> export access-list <value> routing routing-instance <instance-name> protocols msdp peer-group <name> export rp-list <value> routing routing-instance <instance-name> protocols msdp peer-group <name> holdtime <value> routing routing-instance <instance-name> protocols msdp peer-group <name> import access-list <value> routing routing-instance <instance-name> protocols msdp peer-group <name> import rp-list <value> routing routing-instance <instance-name> protocols msdp peer-group <name> keepalive <value> routing routing-instance <instance-name> protocols msdp peer-group <name> peer <value> routing routing-instance <instance-name> protocols msdp peer-group <name> sa-limit <value> routing routing-instance <instance-name> protocols msdp peer-group <name> shutdown routing routing-instance <instance-name> protocols msdp sa-cache <value> routing routing-instance <instance-name> protocols msdp sa-holdtime <value> routing routing-instance <instance-name> protocols multicast ip log all routing routing-instance <instance-name> protocols multicast ip log event routing routing-instance <instance-name> protocols multicast ip log fib-msg routing routing-instance <instance-name> protocols multicast ip log mrib-msg routing routing-instance <instance-name> protocols multicast ip log mrt routing routing-instance <instance-name> protocols multicast ip log mtrace routing routing-instance <instance-name> protocols multicast ip log mtrace-detail routing routing-instance <instance-name> protocols multicast ip log nsm-msg routing routing-instance <instance-name> protocols multicast ip log register-msg routing routing-instance <instance-name> protocols multicast ip log stats routing routing-instance <instance-name> protocols multicast ip log vif routing routing-instance <instance-name> protocols multicast ip log-warning <value> routing routing-instance <instance-name> protocols multicast ip route-limit <value> routing routing-instance <instance-name> protocols multicast ip routing routing routing-instance <instance-name> protocols multicast ipv6 log all routing routing-instance <instance-name> protocols multicast ipv6 log event routing routing-instance <instance-name> protocols multicast ipv6 log fib-msq routing routing-instance <instance-name> protocols multicast ipv6 log mrib-msq routing routing-instance <instance-name> protocols multicast ipv6 log mrt

```
routing routing-instance <instance-name> protocols multicast ipv6 log
mtrace
routing routing-instance <instance-name> protocols multicast ipv6 log
mtrace-detail
routing routing-instance <instance-name> protocols multicast ipv6 log
nsm-msg
routing routing-instance <instance-name> protocols multicast ipv6 log
 register-msg
routing routing-instance <instance-name> protocols multicast ipv6 log stats
routing routing-instance <instance-name> protocols multicast ipv6 log vif
routing routing-instance <instance-name> protocols multicast ipv6
log-warning <value>
routing routing-instance <instance-name> protocols multicast ipv6
 route-limit <value>
routing routing-instance <instance-name> protocols multicast ipv6 routing
routing routing-instance <instance-name> protocols nsm log all
routing routing-instance <instance-name> protocols nsm log events
routing routing-instance <instance-name> protocols nsm log kernel
routing routing-instance <instance-name> protocols ospf process <instance>
routing routing-instance <instance-name> protocols ospf process <instance>
 area <area-identifier>
routing routing-instance <instance-name> protocols ospf process <instance>
 area <area-identifier> area-type
routing routing-instance <instance-name> protocols ospf process <instance>
 area <area-identifier> area-type nssa
routing routing-instance <instance-name> protocols ospf process <instance>
 area <area-identifier> area-type nssa default-cost <value>
routing routing-instance <instance-name> protocols ospf process <instance>
 area <area-identifier> area-type nssa default-information-originate
routing routing-instance <instance-name> protocols ospf process <instance>
 area <area-identifier> area-type nssa default-information-originate metric
 <value>
routing routing-instance <instance-name> protocols ospf process <instance>
 area <area-identifier> area-type nssa default-information-originate
metric-type <value>
routing routing-instance <instance-name> protocols ospf process <instance>
 area <area-identifier> area-type nssa default-information-originate
 route-map <value>
routing routing-instance <instance-name> protocols ospf process <instance>
 area <area-identifier> area-type nssa no-summary
routing routing-instance <instance-name> protocols ospf process <instance>
area <area-identifier> area-type nssa translate <value>
routing routing-instance <instance-name> protocols ospf process <instance>
 area <area-identifier> area-type stub
routing routing-instance <instance-name> protocols ospf process <instance>
 area <area-identifier> area-type stub default-cost <value>
routing routing-instance <instance-name> protocols ospf process <instance>
 area <area-identifier> area-type stub no-summary
routing routing-instance <instance-name> protocols ospf process <instance>
 area <area-identifier> authentication <value>
routing routing-instance <instance-name> protocols ospf process <instance>
 area <area-identifier> network <value>
```

routing routing-instance <instance-name> protocols ospf process <instance> area <area-identifier> range <prefix> routing routing-instance <instance-name> protocols ospf process <instance> area <area-identifier> range <prefix> metric <value> routing routing-instance <instance-name> protocols ospf process <instance> area <area-identifier> range <prefix> not-advertise routing routing-instance <instance-name> protocols ospf process <instance> area <area-identifier> shortcut <value> routing routing-instance <instance-name> protocols ospf process <instance> area <area-identifier> virtual-link <address> routing routing-instance <instance-name> protocols ospf process <instance> area <area-identifier> virtual-link <address> authentication routing routing-instance <instance-name> protocols ospf process <instance> area <area-identifier> virtual-link <address> authentication md5 routing routing-instance <instance-name> protocols ospf process <instance> area <area-identifier> virtual-link <address> authentication md5-key-id <key-id> routing routing-instance <instance-name> protocols ospf process <instance> area <area-identifier> virtual-link <address> authentication md5-key-id <key-id> md5-key <value> routing routing-instance <instance-name> protocols ospf process <instance> area <area-identifier> virtual-link <address> authentication plaintext routing routing-instance <instance-name> protocols ospf process <instance> area <area-identifier> virtual-link <address> authentication plaintext-password <value> routing routing-instance <instance-name> protocols ospf process <instance> area <area-identifier> virtual-link <address> dead-interval <value> routing routing-instance <instance-name> protocols ospf process <instance> area <area-identifier> virtual-link <address> fall-over bfd routing routing-instance <instance-name> protocols ospf process <instance> area <area-identifier> virtual-link <address> hello-interval <value> routing routing-instance <instance-name> protocols ospf process <instance> area <area-identifier> virtual-link <address> retransmit-interval <value> routing routing-instance <instance-name> protocols ospf process <instance> area <area-identifier> virtual-link <address> transmit-delay <value>

routing routing-instance <instance-name> protocols ospf process <instance> auto-cost

routing routing-instance <instance-name> protocols ospf process <instance>
 auto-cost reference-bandwidth <value>

routing routing-instance <instance-name> protocols ospf process <instance> default-information originate

routing routing-instance <instance-name> protocols ospf process <instance> default-information originate always

routing routing-instance <instance-name> protocols ospf process <instance> default-information originate metric <value>

routing routing-instance <instance-name> protocols ospf process <instance> default-information originate metric-type <value>

routing routing-instance <instance-name> protocols ospf process <instance> default-information originate route-map <value>

routing routing-instance <instance-name> protocols ospf process <instance> default-metric <value>

routing routing-instance <instance-name> protocols ospf process <instance> distance

```
routing routing-instance <instance-name> protocols ospf process <instance>
distance global <value>
routing routing-instance <instance-name> protocols ospf process <instance>
 distance ospf
routing routing-instance <instance-name> protocols ospf process <instance>
 distance ospf external <value>
routing routing-instance <instance-name> protocols ospf process <instance>
 distance ospf inter-area <value>
routing routing-instance <instance-name> protocols ospf process <instance>
distance ospf intra-area <value>
routing routing-instance <instance-name> protocols ospf process <instance>
 distribute-list <access-list-name>
routing routing-instance <instance-name> protocols ospf process <instance>
 distribute-list <access-list-name> export <value>
routing routing-instance <instance-name> protocols ospf process <instance>
 distribute-list <access-list-name> export-ospf process-id <process-id>
routing routing-instance <instance-name> protocols ospf process <instance>
 distribute-list <access-list-name> import
routing routing-instance <instance-name> protocols ospf process <instance>
 log all
routing routing-instance <instance-name> protocols ospf process <instance>
 log bfd
routing routing-instance <instance-name> protocols ospf process <instance>
log database-timer rate-limit
routing routing-instance <instance-name> protocols ospf process <instance>
 log events abr
routing routing-instance <instance-name> protocols ospf process <instance>
 log events all
routing routing-instance <instance-name> protocols ospf process <instance>
 log events asbr
routing routing-instance <instance-name> protocols ospf process <instance>
 log events lsa
routing routing-instance <instance-name> protocols ospf process <instance>
log events nssa
routing routing-instance <instance-name> protocols ospf process <instance>
 log events os
routing routing-instance <instance-name> protocols ospf process <instance>
 log events router
routing routing-instance <instance-name> protocols ospf process <instance>
 log events vlink
routing routing-instance <instance-name> protocols ospf process <instance>
 log ifsm all
routing routing-instance <instance-name> protocols ospf process <instance>
 log ifsm events
routing routing-instance <instance-name> protocols ospf process <instance>
 log ifsm status
routing routing-instance <instance-name> protocols ospf process <instance>
 log ifsm timers
routing routing-instance <instance-name> protocols ospf process <instance>
 log lsa all
routing routing-instance <instance-name> protocols ospf process <instance>
 log lsa flooding
```

routing routing-instance <instance-name> protocols ospf process <instance> log lsa generate routing routing-instance <instance-name> protocols ospf process <instance> log lsa install routing routing-instance <instance-name> protocols ospf process <instance> log lsa maxage routing routing-instance <instance-name> protocols ospf process <instance> log lsa refresh routing routing-instance <instance-name> protocols ospf process <instance> log nfsm all routing routing-instance <instance-name> protocols ospf process <instance> log nfsm events routing routing-instance <instance-name> protocols ospf process <instance> log nfsm status routing routing-instance <instance-name> protocols ospf process <instance> log nfsm timers routing routing-instance <instance-name> protocols ospf process <instance> log nsm all routing routing-instance <instance-name> protocols ospf process <instance> log nsm interface routing routing-instance <instance-name> protocols ospf process <instance> log nsm redistribute routing routing-instance <instance-name> protocols ospf process <instance> log packet all routing routing-instance <instance-name> protocols ospf process <instance> log packet dd routing routing-instance <instance-name> protocols ospf process <instance> log packet detail routing routing-instance <instance-name> protocols ospf process <instance> log packet hello routing routing-instance <instance-name> protocols ospf process <instance> log packet ls-ack routing routing-instance <instance-name> protocols ospf process <instance> log packet ls-request routing routing-instance <instance-name> protocols ospf process <instance> log packet ls-update routing routing-instance <instance-name> protocols ospf process <instance> log packet recv routing routing-instance <instance-name> protocols ospf process <instance> log packet send routing routing-instance <instance-name> protocols ospf process <instance> log rib all routing routing-instance <instance-name> protocols ospf process <instance> log rib interface routing routing-instance <instance-name> protocols ospf process <instance> log rib redistribute routing routing-instance <instance-name> protocols ospf process <instance> log route all routing routing-instance <instance-name> protocols ospf process <instance> log route ase routing routing-instance <instance-name> protocols ospf process <instance> log route ia

routing routing-instance <instance-name> protocols ospf process <instance> log route install routing routing-instance <instance-name> protocols ospf process <instance> log route spf routing routing-instance <instance-name> protocols ospf process <instance> neighbor <address> routing routing-instance <instance-name> protocols ospf process <instance> neighbor <address> poll-interval <value> routing routing-instance <instance-name> protocols ospf process <instance> neighbor <address> priority <value> routing routing-instance <instance-name> protocols ospf process <instance> overflow database external routing routing-instance <instance-name> protocols ospf process <instance> overflow database external limit <number> routing routing-instance <instance-name> protocols ospf process <instance> overflow database external limit <number> recovery <value> routing routing-instance <instance-name> protocols ospf process <instance> overflow database hard limit <value> routing routing-instance <instance-name> protocols ospf process <instance> overflow database soft limit <value> routing routing-instance <instance-name> protocols ospf process <instance> parameters routing routing-instance <instance-name> protocols ospf process <instance> parameters abr-type <value> routing routing-instance <instance-name> protocols ospf process <instance> parameters opaque-lsa routing routing-instance <instance-name> protocols ospf process <instance> parameters rfc1583-compatibility routing routing-instance <instance-name> protocols ospf process <instance> parameters router-id <value> routing routing-instance <instance-name> protocols ospf process <instance> passive-interface <value> routing routing-instance <instance-name> protocols ospf process <instance> passive-interface-exclude <value> routing routing-instance <instance-name> protocols ospf process <instance> redistribute bgp routing routing-instance <instance-name> protocols ospf process <instance> redistribute bgp metric <value> routing routing-instance <instance-name> protocols ospf process <instance> redistribute bgp metric-type <value> routing routing-instance <instance-name> protocols ospf process <instance> redistribute bgp route-map <value> routing routing-instance <instance-name> protocols ospf process <instance> redistribute bgp tag <value> routing routing-instance <instance-name> protocols ospf process <instance> redistribute connected routing routing-instance <instance-name> protocols ospf process <instance> redistribute connected metric <value> routing routing-instance <instance-name> protocols ospf process <instance> redistribute connected metric-type <value> routing routing-instance <instance-name> protocols ospf process <instance> redistribute connected route-map <value>

routing routing-instance <instance-name> protocols ospf process <instance> redistribute connected tag <value> routing routing-instance <instance-name> protocols ospf process <instance> redistribute kernel routing routing-instance <instance-name> protocols ospf process <instance> redistribute kernel metric <value> routing routing-instance <instance-name> protocols ospf process <instance> redistribute kernel metric-type <value> routing routing-instance <instance-name> protocols ospf process <instance> redistribute kernel route-map <value> routing routing-instance <instance-name> protocols ospf process <instance> redistribute kernel tag <value> routing routing-instance <instance-name> protocols ospf process <instance> redistribute ospf process-id <process-id> routing routing-instance <instance-name> protocols ospf process <instance> redistribute ospf process-id <process-id> metric <value> routing routing-instance <instance-name> protocols ospf process <instance> redistribute ospf process-id <process-id> metric-type <value> routing routing-instance <instance-name> protocols ospf process <instance> redistribute ospf process-id <process-id > route-map <value> routing routing-instance <instance-name> protocols ospf process <instance> redistribute ospf process-id <process-id> tag <value> routing routing-instance <instance-name> protocols ospf process <instance> redistribute rip routing routing-instance <instance-name> protocols ospf process <instance> redistribute rip metric <value> routing routing-instance <instance-name> protocols ospf process <instance> redistribute rip metric-type <value> routing routing-instance <instance-name> protocols ospf process <instance> redistribute rip route-map <value> routing routing-instance <instance-name> protocols ospf process <instance> redistribute rip tag <value> routing routing-instance <instance-name> protocols ospf process <instance> redistribute static routing routing-instance <instance-name> protocols ospf process <instance> redistribute static metric <value> routing routing-instance <instance-name> protocols ospf process <instance> redistribute static metric-type <value> routing routing-instance <instance-name> protocols ospf process <instance> redistribute static route-map <value> routing routing-instance <instance-name> protocols ospf process <instance> redistribute static tag <value> routing routing-instance <instance-name> protocols ospf process <instance> refresh routing routing-instance <instance-name> protocols ospf process <instance> refresh timers <value> routing routing-instance <instance-name> protocols ospf process <instance> summary-address <address> routing routing-instance <instance-name> protocols ospf process <instance> summary-address <address> advertise routing routing-instance <instance-name> protocols ospf process <instance> summary-address <address> advertise tag <value>

```
routing routing-instance <instance-name> protocols ospf process <instance>
 summary-address <address> not-advertise
routing routing-instance <instance-name> protocols ospf process <instance>
 timers lsa arrival <value>
routing routing-instance <instance-name> protocols ospf process <instance>
 timers throttle lsa delay <value>
routing routing-instance <instance-name> protocols ospf process <instance>
 timers throttle lsa max-wait <value>
routing routing-instance <instance-name> protocols ospf process <instance>
 timers throttle lsa min-wait <value>
routing routing-instance <instance-name> protocols ospf process <instance>
 timers throttle spf delay <value>
routing routing-instance <instance-name> protocols ospf process <instance>
 timers throttle spf max-wait <value>
routing routing-instance <instance-name> protocols ospf process <instance>
 timers throttle spf min-wait <value>
routing routing-instance <instance-name> protocols ospfv3 process
 <process-name>
routing routing-instance <instance-name> protocols ospfv3 process
 cess-name> abr-type <value>
routing routing-instance <instance-name> protocols ospfv3 process
 <process-name> address-family
routing routing-instance <instance-name> protocols ospfv3 process
 <process-name> address-family ipv4
routing routing-instance <instance-name> protocols ospfv3 process
 <process-name> address-family ipv4 unicast
routing routing-instance <instance-name> protocols ospfv3 process
 <process-name> address-family ipv4 unicast area <area-identifier>
routing routing-instance <instance-name> protocols ospfv3 process
 <process-name> address-family ipv4 unicast area <area-identifier> range
 <prefix>
routing routing-instance <instance-name> protocols ospfv3 process
 <process-name> address-family ipv4 unicast area <area-identifier> range
 <prefix> advertise
routing routing-instance <instance-name> protocols ospfv3 process
 <process-name> address-family ipv4 unicast area <area-identifier> range
 <prefix> metric <value>
routing routing-instance <instance-name> protocols ospfv3 process
 <process-name> address-family ipv4 unicast area <area-identifier> range
 <prefix> not-advertise
routing routing-instance <instance-name> protocols ospfv3 process
 <process-name> address-family ipv4 unicast default-information
routing routing-instance <instance-name> protocols ospfv3 process
 <process-name> address-family ipv4 unicast default-information originate
routing routing-instance <instance-name> protocols ospfv3 process
 <process-name> address-family ipv4 unicast default-information originate
 always
routing routing-instance <instance-name> protocols ospfv3 process
 <process-name> address-family ipv4 unicast default-information originate
 metric <value>
routing routing-instance <instance-name> protocols ospfv3 process
 <process-name> address-family ipv4 unicast default-information originate
 metric-type <value>
```

routing routing-instance <instance-name> protocols ospfv3 process <process-name> address-family ipv4 unicast default-information originate route-map <value> routing routing-instance <instance-name> protocols ospfv3 process cerss-name> address-family ipv4 unicast redistribute routing routing-instance <instance-name> protocols ospfv3 process cess-name> address-family ipv4 unicast redistribute bgp routing routing-instance <instance-name> protocols ospfv3 process <process-name> address-family ipv4 unicast redistribute bgp metric <value> routing routing-instance <instance-name> protocols ospfv3 process <process-name> address-family ipv4 unicast redistribute bgp metric-type <value> routing routing-instance <instance-name> protocols ospfv3 process <process-name> address-family ipv4 unicast redistribute bgp route-map <value> routing routing-instance <instance-name> protocols ospfv3 process <process-name> address-family ipv4 unicast redistribute bgp tag <value> routing routing-instance <instance-name> protocols ospfv3 process <process-name> address-family ipv4 unicast redistribute connected routing routing-instance <instance-name> protocols ospfv3 process <process-name> address-family ipv4 unicast redistribute connected metric <value> routing routing-instance <instance-name> protocols ospfv3 process <process-name> address-family ipv4 unicast redistribute connected metric-type <value> routing routing-instance <instance-name> protocols ospfv3 process <process-name> address-family ipv4 unicast redistribute connected route-map <value> routing routing-instance <instance-name> protocols ospfv3 process <process-name> address-family ipv4 unicast redistribute connected tag <value> routing routing-instance <instance-name> protocols ospfv3 process cess-name> address-family ipv4 unicast redistribute kernel routing routing-instance <instance-name> protocols ospfv3 process <process-name> address-family ipv4 unicast redistribute kernel metric <value> routing routing-instance <instance-name> protocols ospfv3 process <process-name> address-family ipv4 unicast redistribute kernel metric-type <value> routing routing-instance <instance-name> protocols ospfv3 process <process-name> address-family ipv4 unicast redistribute kernel route-map <value> routing routing-instance <instance-name> protocols ospfv3 process <process-name> address-family ipv4 unicast redistribute kernel tag <value> routing routing-instance <instance-name> protocols ospfv3 process cess-name> address-family ipv4 unicast redistribute ospf routing routing-instance <instance-name> protocols ospfv3 process <process-name> address-family ipv4 unicast redistribute ospf metric <value> routing routing-instance <instance-name> protocols ospfv3 process <process-name> address-family ipv4 unicast redistribute ospf metric-type <value>

routing routing-instance <instance-name> protocols ospfv3 process <process-name> address-family ipv4 unicast redistribute ospf route-map <value> routing routing-instance <instance-name> protocols ospfv3 process <process-name> address-family ipv4 unicast redistribute ospf tag <value> routing routing-instance <instance-name> protocols ospfv3 process process-name> address-family ipv4 unicast redistribute rip routing routing-instance <instance-name> protocols ospfv3 process <process-name> address-family ipv4 unicast redistribute rip metric <value> routing routing-instance <instance-name> protocols ospfv3 process <process-name> address-family ipv4 unicast redistribute rip metric-type <value> routing routing-instance <instance-name> protocols ospfv3 process <process-name> address-family ipv4 unicast redistribute rip route-map <value> routing routing-instance <instance-name> protocols ospfv3 process <process-name> address-family ipv4 unicast redistribute rip tag <value> routing routing-instance <instance-name> protocols ospfv3 process <process-name> address-family ipv4 unicast redistribute static routing routing-instance <instance-name> protocols ospfv3 process <process-name> address-family ipv4 unicast redistribute static metric <value> routing routing-instance <instance-name> protocols ospfv3 process <process-name> address-family ipv4 unicast redistribute static metric-type <value> routing routing-instance <instance-name> protocols ospfv3 process <process-name> address-family ipv4 unicast redistribute static route-map <value> routing routing-instance <instance-name> protocols ospfv3 process <process-name> address-family ipv4 unicast redistribute static tag <value> routing routing-instance <instance-name> protocols ospfv3 process <process-name> address-family ipv4 unicast summary-address <address> routing routing-instance <instance-name> protocols ospfv3 process <process-name> address-family ipv4 unicast summary-address <address> advertise routing routing-instance <instance-name> protocols ospfv3 process <process-name> address-family ipv4 unicast summary-address <address> advertise tag <value> routing routing-instance <instance-name> protocols ospfv3 process <process-name> address-family ipv4 unicast summary-address <address> not-advertise routing routing-instance <instance-name> protocols ospfv3 process <process-name> area <area-identifier> routing routing-instance <instance-name> protocols ospfv3 process <process-name> area <area-identifier> nssa routing routing-instance <instance-name> protocols ospfv3 process <process-name> area <area-identifier> nssa default-cost <value> routing routing-instance <instance-name> protocols ospfv3 process <process-name> area <area-identifier> nssa default-information-originate routing routing-instance <instance-name> protocols ospfv3 process <process-name> area <area-identifier> nssa default-information-originate metric <value>

```
routing routing-instance <instance-name> protocols ospfv3 process
 <process-name> area <area-identifier> nssa default-information-originate
metric-type <value>
routing routing-instance <instance-name> protocols ospfv3 process
 cess-name> area <area-identifier> nssa no-redistribution
routing routing-instance <instance-name> protocols ospfv3 process
 cprocess-name> area <area-identifier> nssa no-summary
routing routing-instance <instance-name> protocols ospfv3 process
 <process-name> area <area-identifier> nssa stability-interval <value>
routing routing-instance <instance-name> protocols ospfv3 process
 cess-name> area <area-identifier> nssa translator-role <value>
routing routing-instance <instance-name> protocols ospfv3 process
 <process-name> area <area-identifier> range <prefix>
routing routing-instance <instance-name> protocols ospfv3 process
 cerss-name> area <area-identifier> range <prefix> advertise
routing routing-instance <instance-name> protocols ospfv3 process
 <process-name> area <area-identifier> range <prefix> metric <value>
routing routing-instance <instance-name> protocols ospfv3 process
 <process-name> area <area-identifier> range <prefix> not-advertise
routing routing-instance <instance-name> protocols ospfv3 process
 <process-name> area <area-identifier> stub
routing routing-instance <instance-name> protocols ospfv3 process
 cerss-name> area <area-identifier> stub default-cost <value>
routing routing-instance <instance-name> protocols ospfv3 process
 <process-name> area <area-identifier> stub no-summary
routing routing-instance <instance-name> protocols ospfv3 process
 cerss-name> area <area-identifier> virtual-link <address>
routing routing-instance <instance-name> protocols ospfv3 process
 <process-name> area <area-identifier> virtual-link <address> dead-interval
 <value>
routing routing-instance <instance-name> protocols ospfv3 process
 <process-name> area <area-identifier> virtual-link <address> fall-over bfd
routing routing-instance <instance-name> protocols ospfv3 process
 cerss-name> area <area-identifier> virtual-link <address>
hello-interval <value>
routing routing-instance <instance-name> protocols ospfv3 process
 cerss-name> area <area-identifier> virtual-link <address>
retransmit-interval <value>
routing routing-instance <instance-name> protocols ospfv3 process
 cerss-name> area <area-identifier> virtual-link <address>
 transmit-delay <value>
routing routing-instance <instance-name> protocols ospfv3 process
 <process-name> auto-cost
routing routing-instance <instance-name> protocols ospfv3 process
 <process-name> auto-cost reference-bandwidth <value>
routing routing-instance <instance-name> protocols ospfv3 process
 <process-name> default-information
routing routing-instance <instance-name> protocols ospfv3 process
 <process-name> default-information originate
routing routing-instance <instance-name> protocols ospfv3 process
 <process-name> default-information originate always
routing routing-instance <instance-name> protocols ospfv3 process
 <process-name> default-information originate metric <value>
```

```
routing routing-instance <instance-name> protocols ospfv3 process
 cerss-name> default-information originate metric-type <value>
routing routing-instance <instance-name> protocols ospfv3 process
 <process-name> default-information originate route-map <value>
routing routing-instance <instance-name> protocols ospfv3 process
 <process-name> default-metric <value>
routing routing-instance <instance-name> protocols ospfv3 process
 <process-name> distance
routing routing-instance <instance-name> protocols ospfv3 process
 <process-name> distance global <value>
routing routing-instance <instance-name> protocols ospfv3 process
 <process-name> distance ospfv3
routing routing-instance <instance-name> protocols ospfv3 process
 <process-name> distance ospfv3 external <value>
routing routing-instance <instance-name> protocols ospfv3 process
 <process-name> distance ospfv3 inter-area <value>
routing routing-instance <instance-name> protocols ospfv3 process
 <process-name> distance ospfv3 intra-area <value>
routing routing-instance <instance-name> protocols ospfv3 process
 <process-name> distribute-list <access-list-name>
routing routing-instance <instance-name> protocols ospfv3 process
 cess-name> distribute-list <access-list-name> export <value>
routing routing-instance <instance-name> protocols ospfv3 process
 cerss-name> distribute-list <access-list-name> import
routing routing-instance <instance-name> protocols ospfv3 process
 <process-name> log all
routing routing-instance <instance-name> protocols ospfv3 process
 <process-name> log bfd
routing routing-instance <instance-name> protocols ospfv3 process
 <process-name> log events abr
routing routing-instance <instance-name> protocols ospfv3 process
 <process-name> log events all
routing routing-instance <instance-name> protocols ospfv3 process
 <process-name> log events asbr
routing routing-instance <instance-name> protocols ospfv3 process
 <process-name> log events lsa
routing routing-instance <instance-name> protocols ospfv3 process
 <process-name> log events nssa
routing routing-instance <instance-name> protocols ospfv3 process
 <process-name> log events os
routing routing-instance <instance-name> protocols ospfv3 process
 <process-name> log events router
routing routing-instance <instance-name> protocols ospfv3 process
 cess-name> log events vlink
routing routing-instance <instance-name> protocols ospfv3 process
 <process-name> log ifsm all
routing routing-instance <instance-name> protocols ospfv3 process
 <process-name> log ifsm events
routing routing-instance <instance-name> protocols ospfv3 process
 cess-name> log ifsm status
routing routing-instance <instance-name> protocols ospfv3 process
 <process-name> log ifsm timers
```

```
routing routing-instance <instance-name> protocols ospfv3 process
 <process-name> log lsa all
routing routing-instance <instance-name> protocols ospfv3 process
 <process-name> log lsa flooding
routing routing-instance <instance-name> protocols ospfv3 process
 <process-name> log lsa generate
routing routing-instance <instance-name> protocols ospfv3 process
 <process-name> log lsa install
routing routing-instance <instance-name> protocols ospfv3 process
 <process-name> log lsa maxage
routing routing-instance <instance-name> protocols ospfv3 process
 <process-name> log lsa refresh
routing routing-instance <instance-name> protocols ospfv3 process
 <process-name> log nfsm all
routing routing-instance <instance-name> protocols ospfv3 process
 <process-name> log nfsm events
routing routing-instance <instance-name> protocols ospfv3 process
 <process-name> log nfsm status
routing routing-instance <instance-name> protocols ospfv3 process
 <process-name> log nfsm timers
routing routing-instance <instance-name> protocols ospfv3 process
 <process-name> log nsm all
routing routing-instance <instance-name> protocols ospfv3 process
 <process-name> log nsm interface
routing routing-instance <instance-name> protocols ospfv3 process
 <process-name> log nsm redistribute
routing routing-instance <instance-name> protocols ospfv3 process
 <process-name> log packet all
routing routing-instance <instance-name> protocols ospfv3 process
 <process-name> log packet dd
routing routing-instance <instance-name> protocols ospfv3 process
 <process-name> log packet detail
routing routing-instance <instance-name> protocols ospfv3 process
 <process-name> log packet hello
routing routing-instance <instance-name> protocols ospfv3 process
 <process-name> log packet ls-ack
routing routing-instance <instance-name> protocols ospfv3 process
 <process-name> log packet ls-request
routing routing-instance <instance-name> protocols ospfv3 process
 <process-name> log packet ls-update
routing routing-instance <instance-name> protocols ospfv3 process
 <process-name> log packet recv
routing routing-instance <instance-name> protocols ospfv3 process
 <process-name> log packet send
routing routing-instance <instance-name> protocols ospfv3 process
 <process-name> log retransmission
routing routing-instance <instance-name> protocols ospfv3 process
 <process-name> log rib all
routing routing-instance <instance-name> protocols ospfv3 process
 <process-name> log rib interface
routing routing-instance <instance-name> protocols ospfv3 process
 <process-name> log rib redistribute
```

```
routing routing-instance <instance-name> protocols ospfv3 process
 <process-name> log route all
routing routing-instance <instance-name> protocols ospfv3 process
 <process-name> log route ase
routing routing-instance <instance-name> protocols ospfv3 process
 <process-name> log route ia
routing routing-instance <instance-name> protocols ospfv3 process
 <process-name> log route install
routing routing-instance <instance-name> protocols ospfv3 process
 <process-name> log route spf
routing routing-instance <instance-name> protocols ospfv3 process
 <process-name> passive-interface <value>
routing routing-instance <instance-name> protocols ospfv3 process
 <process-name> passive-interface-exclude <value>
routing routing-instance <instance-name> protocols ospfv3 process
 <process-name> redistribute
routing routing-instance <instance-name> protocols ospfv3 process
 <process-name> redistribute bgp
routing routing-instance <instance-name> protocols ospfv3 process
 <process-name> redistribute bgp metric <value>
routing routing-instance <instance-name> protocols ospfv3 process
 cprocess-name> redistribute bgp metric-type <value>
routing routing-instance <instance-name> protocols ospfv3 process
 <process-name> redistribute bgp route-map <value>
routing routing-instance <instance-name> protocols ospfv3 process
 <process-name> redistribute bgp tag <value>
routing routing-instance <instance-name> protocols ospfv3 process
 <process-name> redistribute connected
routing routing-instance <instance-name> protocols ospfv3 process
 <process-name> redistribute connected metric <value>
routing routing-instance <instance-name> protocols ospfv3 process
 <process-name> redistribute connected metric-type <value>
routing routing-instance <instance-name> protocols ospfv3 process
 <process-name> redistribute connected route-map <value>
routing routing-instance <instance-name> protocols ospfv3 process
 <process-name> redistribute connected tag <value>
routing routing-instance <instance-name> protocols ospfv3 process
 <process-name> redistribute kernel
routing routing-instance <instance-name> protocols ospfv3 process
 <process-name> redistribute kernel metric <value>
routing routing-instance <instance-name> protocols ospfv3 process
 certain content <pre
routing routing-instance <instance-name> protocols ospfv3 process
 cprocess-name> redistribute kernel route-map <value>
routing routing-instance <instance-name> protocols ospfv3 process
 <process-name> redistribute kernel tag <value>
routing routing-instance <instance-name> protocols ospfv3 process
 <process-name> redistribute rip
routing routing-instance <instance-name> protocols ospfv3 process
 <process-name> redistribute rip metric <value>
routing routing-instance <instance-name> protocols ospfv3 process
 <process-name> redistribute rip metric-type <value>
```

```
routing routing-instance <instance-name> protocols ospfv3 process
 <process-name> redistribute rip route-map <value>
routing routing-instance <instance-name> protocols ospfv3 process
 <process-name> redistribute rip tag <value>
routing routing-instance <instance-name> protocols ospfv3 process
 <process-name> redistribute static
routing routing-instance <instance-name> protocols ospfv3 process
 <process-name> redistribute static metric <value>
routing routing-instance <instance-name> protocols ospfv3 process
 <process-name> redistribute static metric-type <value>
routing routing-instance <instance-name> protocols ospfv3 process
 <process-name> redistribute static route-map <value>
routing routing-instance <instance-name> protocols ospfv3 process
 <process-name> redistribute static tag <value>
routing routing-instance <instance-name> protocols ospfv3 process
 <process-name> router-id <value>
routing routing-instance <instance-name> protocols ospfv3 process
 <process-name> summary-address <address>
routing routing-instance <instance-name> protocols ospfv3 process
 <process-name> summary-address <address> advertise
routing routing-instance <instance-name> protocols ospfv3 process
 cerss-name> summary-address <address> advertise tag <value>
routing routing-instance <instance-name> protocols ospfv3 process
 certifies summary-address caddress> not-advertise
routing routing-instance <instance-name> protocols ospfv3 process
 <process-name> timers
routing routing-instance <instance-name> protocols ospfv3 process
 <process-name> timers spf
routing routing-instance <instance-name> protocols ospfv3 process
 <process-name> timers spf exp
routing routing-instance <instance-name> protocols ospfv3 process
 <process-name> timers spf exp max <value>
routing routing-instance <instance-name> protocols ospfv3 process
 <process-name> timers spf exp min <value>
routing routing-instance <instance-name> protocols pim accept-register list
 <value>
routing routing-instance <instance-name> protocols pim anycast-rp <address>
routing routing-instance <instance-name> protocols pim anycast-rp <address>
anycast-rp-peer <value>
routing routing-instance <instance-name> protocols pim bsr-candidate
routing routing-instance <instance-name> protocols pim bsr-candidate
hash-mask <value>
routing routing-instance <instance-name> protocols pim bsr-candidate
 interface <value>
routing routing-instance <instance-name> protocols pim bsr-candidate
priority <value>
routing routing-instance <instance-name> protocols pim
ignore-rp-set-priority
routing routing-instance <instance-name> protocols pim join-prune-timer
 <value>
routing routing-instance <instance-name> protocols pim
legacy-register-checksum
```

```
routing routing-instance <instance-name> protocols pim
legacy-register-checksum group-list <value>
routing routing-instance <instance-name> protocols pim log all
routing routing-instance <instance-name> protocols pim log events
routing routing-instance <instance-name> protocols pim log mfc
routing routing-instance <instance-name> protocols pim log mib
routing routing-instance <instance-name> protocols pim log msdp
routing routing-instance <instance-name> protocols pim log mtrace
routing routing-instance <instance-name> protocols pim log nexthop
routing routing-instance <instance-name> protocols pim log nsm
routing routing-instance <instance-name> protocols pim log packet all
routing routing-instance <instance-name> protocols pim log packet recv
routing routing-instance <instance-name> protocols pim log packet send
routing routing-instance <instance-name> protocols pim log state
routing routing-instance <instance-name> protocols pim log timer all
routing routing-instance <instance-name> protocols pim log timer assert all
routing routing-instance <instance-name> protocols pim log timer assert at
routing routing-instance <instance-name> protocols pim log timer bsr all
routing routing-instance <instance-name> protocols pim log timer bsr bst
routing routing-instance <instance-name> protocols pim log timer bsr crp
routing routing-instance <instance-name> protocols pim log timer hello all
routing routing-instance <instance-name> protocols pim log timer hello ht
routing routing-instance <instance-name> protocols pim log timer hello nlt
routing routing-instance <instance-name> protocols pim log timer hello tht
routing routing-instance <instance-name> protocols pim log timer joinprune
 all
routing routing-instance <instance-name> protocols pim log timer joinprune
 et
routing routing-instance <instance-name> protocols pim log timer joinprune
 jt
routing routing-instance <instance-name> protocols pim log timer joinprune
kat
routing routing-instance <instance-name> protocols pim log timer joinprune
 ot
routing routing-instance <instance-name> protocols pim log timer joinprune
 ppt
routing routing-instance <instance-name> protocols pim log timer register
 all
routing routing-instance <instance-name> protocols pim log timer register
 rst
routing routing-instance <instance-name> protocols pim register-kat <value>
routing routing-instance <instance-name> protocols pim register-rate-limit
 <value>
routing routing-instance <instance-name> protocols pim
 register-rp-reachability
routing routing-instance <instance-name> protocols pim register-source
 address <value>
routing routing-instance <instance-name> protocols pim register-source
 interface <value>
routing routing-instance <instance-name> protocols pim
 register-suppression-timer <value>
routing routing-instance <instance-name> protocols pim rp-address <address>
```

```
routing routing-instance <instance-name> protocols pim rp-address <address>
 list <value>
routing routing-instance <instance-name> protocols pim rp-address <address>
 override
routing routing-instance <instance-name> protocols pim rp-candidate
routing routing-instance <instance-name> protocols pim rp-candidate
 interface <interface-name>
routing routing-instance <instance-name> protocols pim rp-candidate
 interface <interface-name> group-list <value>
routing routing-instance <instance-name> protocols pim rp-candidate
 interface <interface-name> interval <value>
routing routing-instance <instance-name> protocols pim rp-candidate
 interface <interface-name> priority <value>
routing routing-instance <instance-name> protocols pim spt-threshold
 infinity
routing routing-instance <instance-name> protocols pim spt-threshold
infinity group-list <value>
routing routing-instance <instance-name> protocols pim ssm default
routing routing-instance <instance-name> protocols pim ssm range <value>
routing routing-instance <instance-name> protocols pim6 accept-register
routing routing-instance <instance-name> protocols pim6 accept-register
 list <value>
routing routing-instance <instance-name> protocols pim6 anycast-rp
 <address>
routing routing-instance <instance-name> protocols pim6 anycast-rp
 <address> anycast-rp-peer <value>
routing routing-instance <instance-name> protocols pim6 bsr-candidate
routing routing-instance <instance-name> protocols pim6 bsr-candidate
hash-mask <value>
routing routing-instance <instance-name> protocols pim6 bsr-candidate
 interface <value>
routing routing-instance <instance-name> protocols pim6 bsr-candidate
priority <value>
routing routing-instance <instance-name> protocols pim6
 ignore-rp-set-priority
routing routing-instance <instance-name> protocols pim6 join-prune-timer
 <value>
routing routing-instance <instance-name> protocols pim6
legacy-register-checksum
routing routing-instance <instance-name> protocols pim6
 legacy-register-checksum group-list <value>
routing routing-instance <instance-name> protocols pim6 log all
routing routing-instance <instance-name> protocols pim6 log events
routing routing-instance <instance-name> protocols pim6 log mfc
routing routing-instance <instance-name> protocols pim6 log mib
routing routing-instance <instance-name> protocols pim6 log mtrace
routing routing-instance <instance-name> protocols pim6 log nexthop
routing routing-instance <instance-name> protocols pim6 log nsm
routing routing-instance <instance-name> protocols pim6 log packet all
routing routing-instance <instance-name> protocols pim6 log packet recv
routing routing-instance <instance-name> protocols pim6 log packet send
routing routing-instance <instance-name> protocols pim6 log state
routing routing-instance <instance-name> protocols pim6 log timer all
```

```
routing routing-instance <instance-name> protocols pim6 log timer assert
 all
routing routing-instance <instance-name> protocols pim6 log timer assert at
routing routing-instance <instance-name> protocols pim6 log timer bsr all
routing routing-instance <instance-name> protocols pim6 log timer bsr bst
routing routing-instance <instance-name> protocols pim6 log timer bsr crp
routing routing-instance <instance-name> protocols pim6 log timer hello all
routing routing-instance <instance-name> protocols pim6 log timer hello ht
routing routing-instance <instance-name> protocols pim6 log timer hello nlt
routing routing-instance <instance-name> protocols pim6 log timer hello tht
routing routing-instance <instance-name> protocols pim6 log timer joinprune
 all
routing routing-instance <instance-name> protocols pim6 log timer joinprune
 et
routing routing-instance <instance-name> protocols pim6 log timer joinprune
 jt
routing routing-instance <instance-name> protocols pim6 log timer joinprune
kat
routing routing-instance <instance-name> protocols pim6 log timer joinprune
 ot
routing routing-instance <instance-name> protocols pim6 log timer joinprune
 ppt
routing routing-instance <instance-name> protocols pim6 log timer register
 all
routing routing-instance <instance-name> protocols pim6 log timer register
 rst
routing routing-instance <instance-name> protocols pim6 register-kat
 <value>
routing routing-instance <instance-name> protocols pim6 register-rate-limit
 <value>
routing routing-instance <instance-name> protocols pim6
register-rp-reachability
routing routing-instance <instance-name> protocols pim6 register-source
 address <value>
routing routing-instance <instance-name> protocols pim6 register-source
 interface <value>
routing routing-instance <instance-name> protocols pim6
 register-suppression-timer <value>
routing routing-instance <instance-name> protocols pim6 rp-address
 <address>
routing routing-instance <instance-name> protocols pim6 rp-address
 <address> list <value>
routing routing-instance <instance-name> protocols pim6 rp-address
 <address> override
routing routing-instance <instance-name> protocols pim6 rp-candidate
routing routing-instance <instance-name> protocols pim6 rp-candidate
 interface <interface-name>
routing routing-instance <instance-name> protocols pim6 rp-candidate
 interface <interface-name> group-list <value>
routing routing-instance <instance-name> protocols pim6 rp-candidate
 interface <interface-name> interval <value>
routing routing-instance <instance-name> protocols pim6 rp-candidate
 interface <interface-name> priority <value>
```

```
routing routing-instance <instance-name> protocols pim6 rp-embedded
routing routing-instance <instance-name> protocols pim6 spt-threshold
 infinity
routing routing-instance <instance-name> protocols pim6 spt-threshold
 infinity group-list <value>
routing routing-instance <instance-name> protocols pim6 ssm
routing routing-instance <instance-name> protocols pim6 ssm default
routing routing-instance <instance-name> protocols pim6 ssm range <value>
routing routing-instance <instance-name> protocols rib log all
routing routing-instance <instance-name> protocols rib log events
routing routing-instance <instance-name> protocols rib log packet all
routing routing-instance <instance-name> protocols rib log packet detail
routing routing-instance <instance-name> protocols rib log packet recv
routing routing-instance <instance-name> protocols rib log packet send
routing routing-instance <instance-name> protocols rip
routing routing-instance <instance-name> protocols rip default-distance
 <value>
routing routing-instance <instance-name> protocols rip default-information
routing routing-instance <instance-name> protocols rip default-information
 originate
routing routing-instance <instance-name> protocols rip default-metric
 <value>
routing routing-instance <instance-name> protocols rip distribute-list
routing routing-instance <instance-name> protocols rip distribute-list
 access-list
routing routing-instance <instance-name> protocols rip distribute-list
 access-list in <value>
routing routing-instance <instance-name> protocols rip distribute-list
 access-list out <value>
routing routing-instance <instance-name> protocols rip distribute-list
 interface <interface-name>
routing routing-instance <instance-name> protocols rip distribute-list
 interface <interface-name> access-list
routing routing-instance <instance-name> protocols rip distribute-list
 interface <interface-name> access-list in <value>
routing routing-instance <instance-name> protocols rip distribute-list
 interface <interface-name> access-list out <value>
routing routing-instance <instance-name> protocols rip distribute-list
 interface <interface-name> prefix-list
routing routing-instance <instance-name> protocols rip distribute-list
 interface <interface-name> prefix-list in <value>
routing routing-instance <instance-name> protocols rip distribute-list
 interface <interface-name> prefix-list out <value>
routing routing-instance <instance-name> protocols rip distribute-list
 prefix-list
routing routing-instance <instance-name> protocols rip distribute-list
prefix-list in <value>
routing routing-instance <instance-name> protocols rip distribute-list
prefix-list out <value>
routing routing-instance <instance-name> protocols rip interface <value>
routing routing-instance <instance-name> protocols rip log all
routing routing-instance <instance-name> protocols rip log events
routing routing-instance <instance-name> protocols rip log packet all
```

routing routing-instance <instance-name> protocols rip log packet detail routing routing-instance <instance-name> protocols rip log packet recv routing routing-instance <instance-name> protocols rip log packet send routing routing-instance <instance-name> protocols rip neighbor <value> routing routing-instance <instance-name> protocols rip network <value> routing routing-instance <instance-name> protocols rip network-distance <prefix> routing routing-instance <instance-name> protocols rip network-distance <prefix> access-list <value> routing routing-instance <instance-name> protocols rip network-distance <prefix> distance <value> routing routing-instance <instance-name> protocols rip passive-interface <value> routing routing-instance <instance-name> protocols rip redistribute routing routing-instance <instance-name> protocols rip redistribute bgp routing routing-instance <instance-name> protocols rip redistribute bgp metric <value> routing routing-instance <instance-name> protocols rip redistribute bgp route-map <value> routing routing-instance <instance-name> protocols rip redistribute connected routing routing-instance <instance-name> protocols rip redistribute connected metric <value> routing routing-instance <instance-name> protocols rip redistribute connected route-map <value> routing routing-instance <instance-name> protocols rip redistribute kernel routing routing-instance <instance-name> protocols rip redistribute kernel metric <value> routing routing-instance <instance-name> protocols rip redistribute kernel route-map <value> routing routing-instance <instance-name> protocols rip redistribute ospf routing routing-instance <instance-name> protocols rip redistribute ospf metric <value> routing routing-instance <instance-name> protocols rip redistribute ospf route-map <value> routing routing-instance <instance-name> protocols rip redistribute static routing routing-instance <instance-name> protocols rip redistribute static metric <value> routing routing-instance <instance-name> protocols rip redistribute static route-map <value> routing routing-instance <instance-name> protocols rip route <value> routing routing-instance <instance-name> protocols rip timers routing routing-instance <instance-name> protocols rip timers garbage-collection <value> routing routing-instance <instance-name> protocols rip timers timeout <value> routing routing-instance <instance-name> protocols rip timers update <value> routing routing-instance <instance-name> protocols rip version <value> routing routing-instance <instance-name> protocols ripng routing routing-instance <instance-name> protocols ripng aggregate-address <value>

```
routing routing-instance <instance-name> protocols ripng
default-information
routing routing-instance <instance-name> protocols ripng
 default-information originate
routing routing-instance <instance-name> protocols ripng default-metric
 <value>
routing routing-instance <instance-name> protocols ripng distribute-list
routing routing-instance <instance-name> protocols ripng distribute-list
 access-list
routing routing-instance <instance-name> protocols ripng distribute-list
 access-list in <value>
routing routing-instance <instance-name> protocols ripng distribute-list
 access-list out <value>
routing routing-instance <instance-name> protocols ripng distribute-list
 interface <interface-name>
routing routing-instance <instance-name> protocols ripng distribute-list
 interface <interface-name> access-list
routing routing-instance <instance-name> protocols ripng distribute-list
 interface <interface-name> access-list in <value>
routing routing-instance <instance-name> protocols ripng distribute-list
 interface <interface-name> access-list out <value>
routing routing-instance <instance-name> protocols ripng distribute-list
 interface <interface-name> prefix-list
routing routing-instance <instance-name> protocols ripng distribute-list
 interface <interface-name> prefix-list in <value>
routing routing-instance <instance-name> protocols ripng distribute-list
 interface <interface-name> prefix-list out <value>
routing routing-instance <instance-name> protocols ripng distribute-list
 prefix-list
routing routing-instance <instance-name> protocols ripng distribute-list
prefix-list in <value>
routing routing-instance <instance-name> protocols ripng distribute-list
prefix-list out <value>
routing routing-instance <instance-name> protocols ripng log all
routing routing-instance <instance-name> protocols ripng log events
routing routing-instance <instance-name> protocols ripng log packet all
routing routing-instance <instance-name> protocols ripng log packet detail
routing routing-instance <instance-name> protocols ripng log packet recv
routing routing-instance <instance-name> protocols ripng log packet send
routing routing-instance <instance-name> protocols ripng passive-interface
 <value>
routing routing-instance <instance-name> protocols ripng redistribute
routing routing-instance <instance-name> protocols ripng redistribute bgp
routing routing-instance <instance-name> protocols ripng redistribute bgp
metric <value>
routing routing-instance <instance-name> protocols ripng redistribute bgp
 route-map <value>
routing routing-instance <instance-name> protocols ripng redistribute
 connected
routing routing-instance <instance-name> protocols ripng redistribute
 connected metric <value>
routing routing-instance <instance-name> protocols ripng redistribute
 connected route-map <value>
```

routing routing-instance <instance-name> protocols ripng redistribute kernel routing routing-instance <instance-name> protocols ripng redistribute kernel metric <value> routing routing-instance <instance-name> protocols ripng redistribute kernel route-map <value> routing routing-instance <instance-name> protocols ripng redistribute ospfv3 routing routing-instance <instance-name> protocols ripng redistribute ospfv3 metric <value> routing routing-instance <instance-name> protocols ripng redistribute ospfv3 route-map <value> routing routing-instance <instance-name> protocols ripng redistribute static routing routing-instance <instance-name> protocols ripng redistribute static metric <value> routing routing-instance <instance-name> protocols ripng redistribute static route-map <value> routing routing-instance <instance-name> protocols ripng route <value> routing routing-instance <instance-name> protocols ripng timers routing routing-instance <instance-name> protocols ripng timers garbage-collection <value> routing routing-instance <instance-name> protocols ripng timers timeout <value> routing routing-instance <instance-name> protocols ripng timers update <value> routing routing-instance <instance-name> protocols static routing routing-instance <instance-name> protocols static arp <address> routing routing-instance <instance-name> protocols static arp <address> hwaddr <value> routing routing-instance <instance-name> protocols static arp <address> interface <value> routing routing-instance <instance-name> protocols static interface-route <prefix> routing routing-instance <instance-name> protocols static interface-route <prefix> description <value> routing routing-instance <instance-name> protocols static interface-route <prefix> next-hop-interface <interface-name> routing routing-instance <instance-name> protocols static interface-route <prefix> next-hop-interface <interface-name> disable routing routing-instance <instance-name> protocols static interface-route <prefix> next-hop-interface <interface-name> distance <value> routing routing-instance <instance-name> protocols static interface-route <prefix> next-hop-interface <interface-name> path-monitor monitor <name> routing routing-instance <instance-name> protocols static interface-route <prefix> next-hop-interface <interface-name> path-monitor monitor <name> policy <name> routing routing-instance <instance-name> protocols static interface-route <prefix> next-hop-interface <interface-name> path-monitor monitor <name> policy <name> state compliant routing routing-instance <instance-name> protocols static interface-route <prefix> next-hop-interface <interface-name> path-monitor monitor <name> policy <name> state non-compliant

routing routing-instance <instance-name> protocols static interface-route
 <prefix> next-hop-interface <interface-name> tag <value>

routing routing-instance <instance-name> protocols static interface-route
 <prefix> next-hop-routing-instance <routing-instance> next-hop-interface
 <interface-name> path-monitor monitor <name>

routing routing-instance <instance-name> protocols static interface-route
 <prefix> next-hop-routing-instance <routing-instance> next-hop-interface
 <interface-name> path-monitor monitor <name> policy <name>

routing routing-instance <instance-name> protocols static interface-route
 <prefix> next-hop-routing-instance <routing-instance> next-hop-interface
 <interface-name> path-monitor monitor <name> policy <name> state compliant

routing routing-instance <instance-name> protocols static interface-route <prefix> next-hop-routing-instance <routing-instance> next-hop-interface <interface-name> path-monitor monitor <name> policy <name> state non-compliant

routing routing-instance <instance-name> protocols static interface-route
 <prefix> next-hop-routing-instance <routing-instance> next-hop-interface
 <interface-name> tag <value>

routing routing-instance <instance-name> protocols static interface-route6
 <prefix>

routing routing-instance <instance-name> protocols static interface-route6
 <prefix> description <value>

routing routing-instance <instance-name> protocols static interface-route6
 <prefix> next-hop-interface <interface-name>

routing routing-instance <instance-name> protocols static interface-route6
 <prefix> next-hop-interface <interface-name> disable

routing routing-instance <instance-name> protocols static interface-route6
 <prefix> next-hop-interface <interface-name> distance <value>

routing routing-instance <instance-name> protocols static interface-route6
 <prefix> next-hop-interface <interface-name> path-monitor monitor <name>

routing routing-instance <instance-name> protocols static interface-route6
 <prefix> next-hop-interface <interface-name> path-monitor monitor <name>
 policy <name>

routing routing-instance <instance-name> protocols static interface-route6
 <prefix> next-hop-interface <interface-name> path-monitor monitor <name>
 policy <name> state compliant

routing routing-instance <instance-name> protocols static interface-route6
<prefix> next-hop-interface <interface-name> path-monitor monitor <name>
policy <name> state non-compliant

routing routing-instance <instance-name> protocols static interface-route6
 <prefix> next-hop-interface <interface-name> tag <value>

routing routing-instance <instance-name> protocols static interface-route6
 <prefix> next-hop-routing-instance <routing-instance> next-hop-interface
 <interface-name> path-monitor monitor <name>

routing routing-instance <instance-name> protocols static interface-route6
 <prefix> next-hop-routing-instance <routing-instance> next-hop-interface
 <interface-name> path-monitor monitor <name> policy <name>

routing routing-instance <instance-name> protocols static interface-route6 <prefix> next-hop-routing-instance <routing-instance> next-hop-interface <interface-name> path-monitor monitor <name> policy <name> state compliant routing routing-instance <instance-name> protocols static interface-route6 <prefix> next-hop-routing-instance <routing-instance> next-hop-interface

<interface-name> path-monitor monitor <name> policy <name> state non-compliant routing routing-instance <instance-name> protocols static interface-route6 <prefix> next-hop-routing-instance <routing-instance> next-hop-interface <interface-name> tag <value> routing routing-instance <instance-name> protocols static route <prefix> routing routing-instance <instance-name> protocols static route <prefix> blackhole routing routing-instance <instance-name> protocols static route <prefix> blackhole tag <value> routing routing-instance <instance-name> protocols static route <prefix> blackhole distance <value> routing routing-instance <instance-name> protocols static route <prefix> description <value> routing routing-instance <instance-name> protocols static route <prefix> next-hop <address> routing routing-instance <instance-name> protocols static route <prefix> next-hop <address> disable routing routing-instance <instance-name> protocols static route <prefix> next-hop <address> distance <value> routing routing-instance <instance-name> protocols static route <prefix> next-hop <address> fall-over bfd routing routing-instance <instance-name> protocols static route <prefix> next-hop <address> interface <value> routing routing-instance <instance-name> protocols static route <prefix> next-hop <address> path-monitor monitor <name> routing routing-instance <instance-name> protocols static route <prefix> next-hop <address> path-monitor monitor <name> policy <name> routing routing-instance <instance-name> protocols static route <prefix> next-hop <address> path-monitor monitor <name> policy <name> state compliant routing routing-instance <instance-name> protocols static route <prefix> next-hop <address> path-monitor monitor <name> policy <name> state non-compliant routing routing-instance <instance-name> protocols static route <prefix> next-hop <address> tag <value> routing routing-instance <instance-name> protocols static route <prefix> next-hop-routing-instance <routing-instance> routing routing-instance <instance-name> protocols static route <prefix> next-hop-routing-instance <routing-instance> next-hop <address> routing routing-instance <instance-name> protocols static route <prefix> next-hop-routing-instance <routing-instance> next-hop <address> disable routing routing-instance <instance-name> protocols static route <prefix> next-hop-routing-instance <routing-instance > next-hop <address > distance <value> routing routing-instance <instance-name> protocols static route <prefix> next-hop-routing-instance <routing-instance> next-hop <address> interface <value> routing routing-instance <instance-name> protocols static route <prefix> next-hop-routing-instance <routing-instance> next-hop <address> path-monitor monitor <name>

routing routing-instance <instance-name> protocols static route <prefix> next-hop-routing-instance <routing-instance> next-hop <address> path-monitor monitor <name> policy <name> routing routing-instance <instance-name> protocols static route <prefix> next-hop-routing-instance <routing-instance> next-hop <address> path-monitor monitor <name> policy <name> state compliant routing routing-instance <instance-name> protocols static route <prefix> next-hop-routing-instance <routing-instance> next-hop <address> path-monitor monitor <name> policy <name> state non-compliant routing routing-instance <instance-name> protocols static route <prefix> next-hop-routing-instance <routing-instance > next-hop <address > tag <value> routing routing-instance <instance-name> protocols static route <prefix> unreachable routing routing-instance <instance-name> protocols static route <prefix> unreachable distance <value> routing routing-instance <instance-name> protocols static route <prefix> unreachable tag <value> routing routing-instance <instance-name> protocols static route6 <prefix> routing routing-instance <instance-name> protocols static route6 <prefix> blackhole routing routing-instance <instance-name> protocols static route6 <prefix> blackhole distance <value> routing routing-instance <instance-name> protocols static route6 <prefix> blackhole tag <value> routing routing-instance <instance-name> protocols static route6 <prefix> description <value> routing routing-instance <instance-name> protocols static route6 <prefix> next-hop <address> routing routing-instance <instance-name> protocols static route6 <prefix> next-hop <address> disable routing routing-instance <instance-name> protocols static route6 <prefix> next-hop <address> distance <value> routing routing-instance <instance-name> protocols static route6 <prefix> next-hop <address> fall-over bfd routing routing-instance <instance-name> protocols static route6 <prefix> next-hop <address> interface <value> routing routing-instance <instance-name> protocols static route6 <prefix> next-hop <address> path-monitor monitor <name> routing routing-instance <instance-name> protocols static route6 <prefix> next-hop <address> path-monitor monitor <name> policy <name> routing routing-instance <instance-name> protocols static route6 <prefix> next-hop <address> path-monitor monitor <name> policy <name> state compliant routing routing-instance <instance-name> protocols static route6 <prefix> next-hop <address> path-monitor monitor <name> policy <name> state non-compliant routing routing-instance <instance-name> protocols static route6 <prefix> next-hop <address> tag <value> routing routing-instance <instance-name> protocols static route6 <prefix> unreachable routing routing-instance <instance-name> protocols static route6 <prefix> unreachable distance <value>

```
routing routing-instance <instance-name> protocols static route6 <prefix>
unreachable tag <value>
routing routing-instance <instance-name> protocols static table
 <table-number>
routing routing-instance <instance-name> protocols static table
 <table-number> description <value>
routing routing-instance <instance-name> protocols static table
 <table-number> interface-route <prefix>
routing routing-instance <instance-name> protocols static table
 <table-number> interface-route <prefix> description <value>
routing routing-instance <instance-name> protocols static table
 <table-number> interface-route <prefix> next-hop-interface
 <interface-name>
routing routing-instance <instance-name> protocols static table
 <table-number> interface-route <prefix> next-hop-interface
 <interface-name> disable
routing routing-instance <instance-name> protocols static table
 <table-number> interface-route <prefix> next-hop-interface
 <interface-name> distance <value>
routing routing-instance <instance-name> protocols static table
 <table-number> interface-route <prefix> next-hop-interface
 <interface-name> path-monitor monitor <name>
routing routing-instance <instance-name> protocols static table
 <table-number> interface-route <prefix> next-hop-interface
 <interface-name> path-monitor monitor <name> policy <name>
routing routing-instance <instance-name> protocols static table
 <table-number> interface-route <prefix> next-hop-interface
 <interface-name> path-monitor monitor <name> policy <name> state compliant
routing routing-instance <instance-name> protocols static table
 <table-number> interface-route <prefix> next-hop-interface
 <interface-name> path-monitor monitor <name> policy <name> state
non-compliant
routing routing-instance <instance-name> protocols static table
 <table-number> interface-route6 <prefix>
routing routing-instance <instance-name> protocols static table
 <table-number> interface-route6 <prefix> description <value>
routing routing-instance <instance-name> protocols static table
 <table-number> interface-route6 <prefix> next-hop-interface
 <interface-name>
routing routing-instance <instance-name> protocols static table
 <table-number> interface-route6 <prefix> next-hop-interface
 <interface-name> disable
routing routing-instance <instance-name> protocols static table
 <table-number> interface-route6 <prefix> next-hop-interface
 <interface-name> distance <value>
routing routing-instance <instance-name> protocols static table
 <table-number> interface-route6 <prefix> next-hop-interface
 <interface-name> path-monitor monitor <name>
routing routing-instance <instance-name> protocols static table
 <table-number> interface-route6 <prefix> next-hop-interface
 <interface-name> path-monitor monitor <name> policy <name>
```

```
routing routing-instance <instance-name> protocols static table
 <table-number> interface-route6 <prefix> next-hop-interface
 <interface-name> path-monitor monitor <name> policy <name> state compliant
routing routing-instance <instance-name> protocols static table
 <table-number> interface-route6 <prefix> next-hop-interface
 <interface-name> path-monitor monitor <name> policy <name> state
non-compliant
routing routing-instance <instance-name> protocols static table
 <table-number> route <prefix>
routing routing-instance <instance-name> protocols static table
 <table-number> route <prefix> blackhole
routing routing-instance <instance-name> protocols static table
 <table-number> route <prefix> blackhole distance <value>
routing routing-instance <instance-name> protocols static table
 <table-number> route <prefix> description <value>
routing routing-instance <instance-name> protocols static table
 <table-number> route <prefix> next-hop <address>
routing routing-instance <instance-name> protocols static table
 <table-number> route <prefix> next-hop <address> disable
routing routing-instance <instance-name> protocols static table
 <table-number> route <prefix> next-hop <address> distance <value>
routing routing-instance <instance-name> protocols static table
 <table-number> route <prefix> next-hop <address> interface <value>
routing routing-instance <instance-name> protocols static table
 <table-number> route <prefix> next-hop <address> path-monitor monitor
 <name>
routing routing-instance <instance-name> protocols static table
 <table-number> route <prefix> next-hop <address> path-monitor monitor
 <name> policy <name>
routing routing-instance <instance-name> protocols static table
 <table-number> route <prefix> next-hop <address> path-monitor monitor
 <name> policy <name> state compliant
routing routing-instance <instance-name> protocols static table
 <table-number> route <prefix> next-hop <address> path-monitor monitor
 <name> policy <name> state non-compliant
routing routing-instance <instance-name> protocols static table
 <table-number> route <prefix> unreachable
routing routing-instance <instance-name> protocols static table
 <table-number> route <prefix> unreachable distance <value>
routing routing-instance <instance-name> protocols static table
 <table-number> route6 <prefix>
routing routing-instance <instance-name> protocols static table
 <table-number> route6 <prefix> blackhole
routing routing-instance <instance-name> protocols static table
 <table-number> route6 <prefix> blackhole distance <value>
routing routing-instance <instance-name> protocols static table
 <table-number> route6 <prefix> description <value>
routing routing-instance <instance-name> protocols static table
 <table-number> route6 <prefix> next-hop <address>
routing routing-instance <instance-name> protocols static table
 <table-number> route6 <prefix> next-hop <address> disable
routing routing-instance <instance-name> protocols static table
 <table-number> route6 <prefix> next-hop <address> distance <value>
```

```
routing routing-instance <instance-name> protocols static table
 <table-number> route6 <prefix> next-hop <address> interface <value>
routing routing-instance <instance-name> protocols static table
 <table-number> route6 <prefix> next-hop <address> path-monitor monitor
 <name>
routing routing-instance <instance-name> protocols static table
 <table-number> route6 <prefix> next-hop <address> path-monitor monitor
 <name> policy <name>
routing routing-instance <instance-name> protocols static table
 <table-number> route6 <prefix> next-hop <address> path-monitor monitor
 <name> policy <name> state compliant
routing routing-instance <instance-name> protocols static table
 <table-number> route6 <prefix> next-hop <address> path-monitor monitor
 <name> policy <name> state non-compliant
routing routing-instance <instance-name> protocols static table
 <table-number> route6 <prefix> unreachable
routing routing-instance <instance-name> protocols static table
 <table-number> route6 <prefix> unreachable distance <value>
routing routing-instance <instance-name> route-distinguisher <value>
routing routing-instance <instance-name> route-target <rt>
routing routing-instance <instance-name> route-target <rt> type <value>
routing routing-instance <instance-name> security ssh-known-hosts
routing routing-instance <instance-name> security ssh-known-hosts host
 <host-name>
routing routing-instance <instance-name> security ssh-known-hosts host
 <host-name> fetch-from-server
routing routing-instance <instance-name> security ssh-known-hosts host
 <host-name> key <value>
routing routing-instance <instance-name> security ssh-known-hosts host
 <host-name> load-from-file <value>
routing routing-instance <instance-name> service dhcp-relay
routing routing-instance <instance-name> service dhcp-relay
 listen-interface <value>
routing routing-instance <instance-name> service dhcp-relay relay-options
routing routing-instance <instance-name> service dhcp-relay relay-options
hop-count <value>
routing routing-instance <instance-name> service dhcp-relay relay-options
max-size <value>
routing routing-instance <instance-name> service dhcp-relay relay-options
 port <value>
routing routing-instance <instance-name> service dhcp-relay relay-options
relay-agents-packets <value>
routing routing-instance <instance-name> service dhcp-relay server <value>
routing routing-instance <instance-name> service dhcp-relay
 upstream-interface <value>
routing routing-instance <instance-name> service dhcp-server
routing routing-instance <instance-name> service dhcp-server disabled
 <value>
routing routing-instance <instance-name> service dhcp-server
 dynamic-dns-update
routing routing-instance <instance-name> service dhcp-server
dynamic-dns-update enable <value>
```

routing routing-instance <instance-name> service dhcp-server global-parameters <value> routing routing-instance <instance-name> service dhcp-server listento routing routing-instance <instance-name> service dhcp-server listento interface <value> routing routing-instance <instance-name> service dhcp-server shared-network-name <network-name> routing routing-instance <instance-name> service dhcp-server shared-network-name <network-name> authoritative <value> routing routing-instance <instance-name> service dhcp-server shared-network-name <network-name> description <value> routing routing-instance <instance-name> service dhcp-server shared-network-name <network-name> disable routing routing-instance <instance-name> service dhcp-server shared-network-name <network-name> shared-network-parameters <value> routing routing-instance <instance-name> service dhcp-server shared-network-name <network-name> subnet <subnet-prefix> routing routing-instance <instance-name> service dhcp-server shared-network-name <network-name> subnet <subnet-prefix> bootfile-name <value> routing routing-instance <instance-name> service dhcp-server shared-network-name <network-name> subnet <subnet-prefix> bootfile-server <value> routing routing-instance <instance-name> service dhcp-server shared-network-name <network-name> subnet <subnet-prefix> client-prefix-length <value> routing routing-instance <instance-name> service dhcp-server shared-network-name <network-name> subnet <subnet-prefix> default-router <value> routing routing-instance <instance-name> service dhcp-server shared-network-name <network-name> subnet <subnet-prefix> dns-server <value> routing routing-instance <instance-name> service dhcp-server shared-network-name <network-name> subnet <subnet-prefix> domain-name <value> routing routing-instance <instance-name> service dhcp-server shared-network-name <network-name> subnet <subnet-prefix> exclude <value> routing routing-instance <instance-name> service dhcp-server shared-network-name <network-name> subnet <subnet-prefix> failover routing routing-instance <instance-name> service dhcp-server shared-network-name <network-name> subnet <subnet-prefix> failover local-address <value> routing routing-instance <instance-name> service dhcp-server shared-network-name <network-name> subnet <subnet-prefix> failover name <value> routing routing-instance <instance-name> service dhcp-server shared-network-name <network-name> subnet <subnet-prefix> failover peer-address <value> routing routing-instance <instance-name> service dhcp-server shared-network-name <network-name> subnet <subnet-prefix> failover status <value> routing routing-instance <instance-name> service dhcp-server shared-network-name <network-name> subnet <subnet-prefix> ip-forwarding

routing routing-instance <instance-name> service dhcp-server shared-network-name <network-name> subnet <subnet-prefix> ip-forwarding enable <value> routing routing-instance <instance-name> service dhcp-server shared-network-name <network-name> subnet <subnet-prefix> lease <value> routing routing-instance <instance-name> service dhcp-server shared-network-name <network-name> subnet <subnet-prefix> ntp-server <value> routing routing-instance <instance-name> service dhcp-server shared-network-name <network-name> subnet <subnet-prefix> ping-check routing routing-instance <instance-name> service dhcp-server shared-network-name <network-name> subnet <subnet-prefix> pop-server <value> routing routing-instance <instance-name> service dhcp-server shared-network-name <network-name> subnet <subnet-prefix> server-identifier <value> routing routing-instance <instance-name> service dhcp-server shared-network-name <network-name> subnet <subnet-prefix> smtp-server <value> routing routing-instance <instance-name> service dhcp-server shared-network-name <network-name> subnet <subnet-prefix> start <address> routing routing-instance <instance-name> service dhcp-server shared-network-name <network-name> subnet <subnet-prefix> start <address> stop <value> routing routing-instance <instance-name> service dhcp-server shared-network-name <network-name> subnet <subnet-prefix> static-route routing routing-instance <instance-name> service dhcp-server shared-network-name <network-name> subnet <subnet-prefix> static-route destination-subnet <value> routing routing-instance <instance-name> service dhcp-server shared-network-name <network-name> subnet <subnet-prefix> static-route router <value> routing routing-instance <instance-name> service dhcp-server shared-network-name <network-name> subnet <subnet-prefix> subnet-parameters <value> routing routing-instance <instance-name> service dhcp-server shared-network-name <network-name> subnet <subnet-prefix> tftp-server-name <value> routing routing-instance <instance-name> service dhcp-server shared-network-name <network-name> subnet <subnet-prefix> time-offset <value> routing routing-instance <instance-name> service dhcp-server shared-network-name <network-name> subnet <subnet-prefix> time-server <value> routing routing-instance <instance-name> service dhcp-server shared-network-name <network-name> subnet <subnet-prefix> wins-server <value> routing routing-instance <instance-name> service dhcp-server shared-network-name <network-name> subnet <subnet-prefix> wpad-url <value> routing routing-instance <instance-name> service dhcp-server static-mapping <mapping-name> routing routing-instance <instance-name> service dhcp-server static-mapping <mapping-name> disable

```
routing routing-instance <instance-name> service dhcp-server static-mapping
 <mapping-name> ip-address <value>
routing routing-instance <instance-name> service dhcp-server static-mapping
 <mapping-name> mac-address <value>
routing routing-instance <instance-name> service dhcp-server static-mapping
 <mapping-name> static-mapping-parameters <value>
routing routing-instance <instance-name> service dhcpv6-relay
routing routing-instance <instance-name> service dhcpv6-relay
 listen-interface <interface-name>
routing routing-instance <instance-name> service dhcpv6-relay
 listen-interface <interface-name> address <value>
routing routing-instance <instance-name> service dhcpv6-relay listen-port
 <value>
routing routing-instance <instance-name> service dhcpv6-relay max-hop-count
 <value>
routing routing-instance <instance-name> service dhcpv6-relay
upstream-interface <interface-name>
routing routing-instance <instance-name> service dhcpv6-relay
upstream-interface <interface-name> address <value>
routing routing-instance <instance-name> service dhcpv6-relay
use-interface-id-option
routing routing-instance <instance-name> service dhcpv6-server
routing routing-instance <instance-name> service dhcpv6-server listento
 interface <value>
routing routing-instance <instance-name> service dhcpv6-server preference
 <value>
routing routing-instance <instance-name> service dhcpv6-server
 shared-network-name <network-name>
routing routing-instance <instance-name> service dhcpv6-server
 shared-network-name <network-name> subnet <subnet-prefix>
routing routing-instance <instance-name> service dhcpv6-server
 shared-network-name <network-name> subnet <subnet-prefix> address-range
routing routing-instance <instance-name> service dhcpv6-server
 shared-network-name <network-name> subnet <subnet-prefix> address-range
prefix <address>
routing routing-instance <instance-name> service dhcpv6-server
 shared-network-name <network-name> subnet <subnet-prefix> address-range
 prefix <address> temporary
routing routing-instance <instance-name> service dhcpv6-server
 shared-network-name <network-name> subnet <subnet-prefix> address-range
 start <address>
routing routing-instance <instance-name> service dhcpv6-server
 shared-network-name <network-name> subnet <subnet-prefix> address-range
 start <address> stop <value>
routing routing-instance <instance-name> service dhcpv6-server
 shared-network-name <network-name> subnet <subnet-prefix> description
 <value>
routing routing-instance <instance-name> service dhcpv6-server
 shared-network-name <network-name> subnet <subnet-prefix> domain-search
 <value>
routing routing-instance <instance-name> service dhcpv6-server
 shared-network-name <network-name> subnet <subnet-prefix> lease-time
```

routing routing-instance <instance-name> service dhcpv6-server shared-network-name <network-name> subnet <subnet-prefix> lease-time default <value> routing routing-instance <instance-name> service dhcpv6-server shared-network-name <network-name> subnet <subnet-prefix> lease-time maximum <value> routing routing-instance <instance-name> service dhcpv6-server shared-network-name <network-name> subnet <subnet-prefix> lease-time minimum <value> routing routing-instance <instance-name> service dhcpv6-server shared-network-name <network-name> subnet <subnet-prefix> name-server <value> routing routing-instance <instance-name> service dhcpv6-server shared-network-name <network-name> subnet <subnet-prefix> nis-domain <value> routing routing-instance <instance-name> service dhcpv6-server shared-network-name <network-name> subnet <subnet-prefix> nis-server <value> routing routing-instance <instance-name> service dhcpv6-server shared-network-name <network-name> subnet <subnet-prefix> nisplus-domain <value> routing routing-instance <instance-name> service dhcpv6-server shared-network-name <network-name> subnet <subnet-prefix> nisplus-server <value> routing routing-instance <instance-name> service dhcpv6-server shared-network-name <network-name> subnet <subnet-prefix> prefix-delegation start <startip> routing routing-instance <instance-name> service dhcpv6-server shared-network-name <network-name> subnet <subnet-prefix> prefix-delegation start <startip> prefix-length <value> routing routing-instance <instance-name> service dhcpv6-server shared-network-name <network-name> subnet <subnet-prefix> prefix-delegation start <startip> stop <value> routing routing-instance <instance-name> service dhcpv6-server shared-network-name <network-name> subnet <subnet-prefix> sip-server-address <value> routing routing-instance <instance-name> service dhcpv6-server shared-network-name <network-name> subnet <subnet-prefix> sip-server-name <value> routing routing-instance <instance-name> service dhcpv6-server shared-network-name <network-name> subnet <subnet-prefix> sntp-server <value> routing routing-instance <instance-name> service dhcpv6-server static-mapping <mapping-name> routing routing-instance <instance-name> service dhcpv6-server static-mapping <mapping-name> identifier <value> routing routing-instance <instance-name> service dhcpv6-server static-mapping <mapping-name> ipv6-address <value> routing routing-instance <instance-name> service dns routing routing-instance <instance-name> service dns dynamic routing routing-instance <instance-name> service dns dynamic interface <interface-name>

routing routing-instance <instance-name> service dns dynamic interface <interface-name> service <service-name> routing routing-instance <instance-name> service dns dynamic interface <interface-name> service <service-name> host-name <value> routing routing-instance <instance-name> service dns dynamic interface <interface-name> service <service-name> login <value> routing routing-instance <instance-name> service dns dynamic interface <interface-name> service <service-name> password <value> routing routing-instance <instance-name> service dns dynamic interface <interface-name> service <service-name> server <value> routing routing-instance <instance-name> service dns forwarding routing routing-instance <instance-name> service dns forwarding cache-size <value> routing routing-instance <instance-name> service dns forwarding dhcp <value> routing routing-instance <instance-name> service dns forwarding domain <domain-name> routing routing-instance <instance-name> service dns forwarding domain <domain-name> server <value> routing routing-instance <instance-name> service dns forwarding listen-on <value> routing routing-instance <instance-name> service dns forwarding name-server <value> routing routing-instance <instance-name> service dns forwarding system routing routing-instance <instance-name> service ssh routing routing-instance <instance-name> service ssh allow-root routing routing-instance <instance-name> service ssh authentication-retries <value> routing routing-instance <instance-name> service ssh disable-host-validation routing routing-instance <instance-name> service ssh disable-password-authentication routing routing-instance <instance-name> service ssh disable-tcp-forwarding routing routing-instance <instance-name> service ssh key-security-strength <value> routing routing-instance <instance-name> service ssh listen-address <value> routing routing-instance <instance-name> service ssh port <value> routing routing-instance <instance-name> service ssh timeout <value> routing routing-instance <instance-name> service telnet routing routing-instance <instance-name> service telnet listen-address <value> routing routing-instance <instance-name> service telnet port <value> routing routing-instance <instance-name> service twamp server routing routing-instance <instance-name> service twamp server client-list <value> routing routing-instance <instance-name> service twamp server dscp-value <value> routing routing-instance <instance-name> service twamp server maximum-connections <value> routing routing-instance <instance-name> service twamp server maximum-sessions-per-connection <value> routing routing-instance <instance-name> service twamp server mode <value> routing routing-instance <instance-name> service twamp server port <value>

```
routing routing-instance <instance-name> service twamp server
 server-inactivity-timeout <value>
routing routing-instance <instance-name> service twamp server
 test-inactivity-timeout <value>
routing routing-instance <instance-name> service twamp server user <name>
routing routing-instance <instance-name> service twamp server user <name>
 password <value>
routing routing-instance <instance-name> system alg
routing routing-instance <instance-name> system alg ftp
routing routing-instance <instance-name> system alg ftp disable
routing routing-instance <instance-name> system alg ftp port <value>
routing routing-instance <instance-name> system alg pptp
routing routing-instance <instance-name> system alg pptp disable
routing routing-instance <instance-name> system alg rpc
routing routing-instance <instance-name> system alg rpc disable
routing routing-instance <instance-name> system alg rpc program <value>
routing routing-instance <instance-name> system alg rsh disable
routing routing-instance <instance-name> system alg sip
routing routing-instance <instance-name> system alg sip disable
routing routing-instance <instance-name> system alg sip port <value>
routing routing-instance <instance-name> system alg tftp
routing routing-instance <instance-name> system alg tftp disable
routing routing-instance <instance-name> system alg tftp port <value>
routing routing-instance <instance-name> system config-management
 commit-archive
routing routing-instance <instance-name> system config-management
 commit-archive location <value>
routing routing-instance <instance-name> system domain-name <value>
routing routing-instance <instance-name> system domain-search
routing routing-instance <instance-name> system domain-search domain
 <value>
routing routing-instance <instance-name> system login radius-server
 <server-address>
routing routing-instance <instance-name> system login radius-server
 <server-address> port <value>
routing routing-instance <instance-name> system login radius-server
 <server-address> secret <value>
routing routing-instance <instance-name> system login radius-server
 <server-address> timeout <value>
routing routing-instance <instance-name> system login tacplus-server
 <server-address>
routing routing-instance <instance-name> system login tacplus-server
 <server-address> port <value>
routing routing-instance <instance-name> system login tacplus-server
 <server-address> secret <value>
routing routing-instance <instance-name> system login tacplus-server
 <server-address> source-address <value>
routing routing-instance <instance-name> system login tacplus-server
 <server-address> timeout <value>
routing routing-instance <instance-name> system name-server <value>
routing routing-instance <instance-name> system ntp
routing routing-instance <instance-name> system ntp keyid <id>
```

routing routing-instance <instance-name> system ntp keyid <id> digest <value> routing routing-instance <instance-name> system ntp keyid <id> plaintext-password <value> routing routing-instance <instance-name> system ntp server <name> routing routing-instance <instance-name> system ntp server <name> address-family <value> routing routing-instance <instance-name> system ntp server <name> keyid <value> routing routing-instance <instance-name> system ntp server <name> noselect routing routing-instance <instance-name> system ntp server <name> preempt routing routing-instance <instance-name> system ntp server <name> prefer routing routing-instance <instance-name> system ntp statistics routing routing-instance <instance-name> system session timeout routing routing-instance <instance-name> system session timeout custom routing routing-instance <instance-name> system session timeout custom rule <rule-number> routing routing-instance <instance-name> system session timeout custom rule <rule-number> destination routing routing-instance <instance-name> system session timeout custom rule <rule-number> destination address <value> routing routing-instance <instance-name> system session timeout custom rule <rule-number> destination port <value> routing routing-instance <instance-name> system session timeout custom rule <rule-number> expire <value> routing routing-instance <instance-name> system session timeout custom rule <rule-number> protocol <value> routing routing-instance <instance-name> system session timeout custom rule <rule-number> source routing routing-instance <instance-name> system session timeout custom rule <rule-number> source address <value> routing routing-instance <instance-name> system session timeout custom rule <rule-number> source port <value> routing routing-instance <instance-name> system session timeout icmp routing routing-instance <instance-name> system session timeout icmp established <value> routing routing-instance <instance-name> system session timeout icmp new <value> routing routing-instance <instance-name> system session timeout other routing routing-instance <instance-name> system session timeout other established <value> routing routing-instance <instance-name> system session timeout other new <value> routing routing-instance <instance-name> system session timeout tcp routing routing-instance <instance-name> system session timeout tcp close-wait <value> routing routing-instance <instance-name> system session timeout tcp closed <value> routing routing-instance <instance-name> system session timeout tcp closing <value> routing routing-instance <instance-name> system session timeout tcp established <value>

routing routing-instance <instance-name> system session timeout tcp fin-received <value> routing routing-instance <instance-name> system session timeout tcp fin-sent <value> routing routing-instance <instance-name> system session timeout tcp fin-wait <value> routing routing-instance <instance-name> system session timeout tcp last-ack <value> routing routing-instance <instance-name> system session timeout tcp simsyn-sent <value> routing routing-instance <instance-name> system session timeout tcp syn-received <value> routing routing-instance <instance-name> system session timeout tcp syn-sent <value> routing routing-instance <instance-name> system session timeout tcp time-wait <value> routing routing-instance <instance-name> system session timeout udp routing routing-instance <instance-name> system session timeout udp established <value> routing routing-instance <instance-name> system session timeout udp new <value> routing routing-instance <instance-name> system static-host-mapping routing routing-instance <instance-name> system static-host-mapping host-name <name> routing routing-instance <instance-name> system static-host-mapping host-name <name> alias <value> routing routing-instance <instance-name> system static-host-mapping host-name <name> inet <value> routing routing-instance <instance-name> system syslog routing routing-instance <instance-name> system syslog host <host-address> routing routing-instance <instance-name> system syslog host <host-address> facility <logging-facility> routing routing-instance <instance-name> system syslog host <host-address> facility <logging-facility> level <value> routing routing-instance <instance-name> system syslog host <host-address> facility-override <value> service flow-monitoring exporter <exporter-name> udp-collector routing-instance <value> service sflow server-address <addr> routing-instance <value> service snmp routing-instance <value> service snmp trap-target <address> routing-instance <value> service snmp v3 trap-target <address> routing-instance <value>

List of operational commands

```
monitor protocol bfd routing-instance <text>
monitor protocol bfd routing-instance <text> disable all
monitor protocol bfd routing-instance <text> disable event
monitor protocol bfd routing-instance <text> disable ipc-error
monitor protocol bfd routing-instance <text> disable ipc-event
monitor protocol bfd routing-instance <text> disable packet
monitor protocol bfd routing-instance <text> disable session
monitor protocol bfd routing-instance <text> enable all
monitor protocol bfd routing-instance <text> enable event
monitor protocol bfd routing-instance <text> enable ipc-error
monitor protocol bfd routing-instance <text> enable ipc-event
monitor protocol bfd routing-instance <text> enable packet
monitor protocol bfd routing-instance <text> enable session
monitor protocol bgp routing-instance <text>
monitor protocol bgp routing-instance <text> disable <text> all
monitor protocol bgp routing-instance <text> disable <text> bfd
monitor protocol bgp routing-instance <text> disable <text> dampening
monitor protocol bgp routing-instance <text> disable <text> events
monitor protocol bgp routing-instance <text> disable <text> filters
monitor protocol bgp routing-instance <text> disable <text> fsm
monitor protocol bgp routing-instance <text> disable <text> keepalives
monitor protocol bgp routing-instance <text> disable <text> msdp
monitor protocol bgp routing-instance <text> disable <text> updates
monitor protocol bgp routing-instance <text> disable all
monitor protocol bgp routing-instance <text> disable bfd
monitor protocol bgp routing-instance <text> disable dampening
monitor protocol bgp routing-instance <text> disable events
monitor protocol bgp routing-instance <text> disable filters
monitor protocol bgp routing-instance <text> disable fsm
monitor protocol bgp routing-instance <text> disable keepalives
monitor protocol bgp routing-instance <text> disable msdp
monitor protocol bgp routing-instance <text> disable updates
monitor protocol bgp routing-instance <text> enable <text> all
monitor protocol bgp routing-instance <text> enable <text> bfd
monitor protocol bgp routing-instance <text> enable <text> dampening
monitor protocol bgp routing-instance <text> enable <text> events
monitor protocol bgp routing-instance <text> enable <text> filters
monitor protocol bgp routing-instance <text> enable <text> fsm
monitor protocol bgp routing-instance <text> enable <text> keepalives
monitor protocol bgp routing-instance <text> enable <text> msdp
monitor protocol bgp routing-instance <text> enable <text> updates
monitor protocol bgp routing-instance <text> enable <text> updates in
monitor protocol bgp routing-instance <text> enable <text> updates out
monitor protocol bgp routing-instance <text> enable all
monitor protocol bgp routing-instance <text> enable bfd
monitor protocol bgp routing-instance <text> enable dampening
monitor protocol bgp routing-instance <text> enable events
monitor protocol bgp routing-instance <text> enable filters
monitor protocol bgp routing-instance <text> enable fsm
monitor protocol bgp routing-instance <text> enable keepalives
monitor protocol bgp routing-instance <text> enable msdp
monitor protocol bgp routing-instance <text> enable updates
monitor protocol bgp routing-instance <text> enable updates in
```

```
monitor protocol bgp routing-instance <text> enable updates out
monitor protocol multicast routing-instance <text>
monitor protocol multicast routing-instance <text> disable
monitor protocol multicast routing-instance <text> disable igmp
monitor protocol multicast routing-instance <text> disable ip
monitor protocol multicast routing-instance <text> disable ip event
monitor protocol multicast routing-instance <text> disable ip fib-msg
monitor protocol multicast routing-instance <text> disable ip mrib-msg
monitor protocol multicast routing-instance <text> disable ip mrt
monitor protocol multicast routing-instance <text> disable ip mtrace
monitor protocol multicast routing-instance <text> disable ip mtrace-detail
monitor protocol multicast routing-instance <text> disable ip nsm-msg
monitor protocol multicast routing-instance <text> disable ip register-msg
monitor protocol multicast routing-instance <text> disable ip stats
monitor protocol multicast routing-instance <text> disable ip vif
monitor protocol multicast routing-instance <text> disable ipv6
monitor protocol multicast routing-instance <text> disable ipv6 event
monitor protocol multicast routing-instance <text> disable ipv6 fib-msg
monitor protocol multicast routing-instance <text> disable ipv6 mrib-msg
monitor protocol multicast routing-instance <text> disable ipv6 mrt
monitor protocol multicast routing-instance <text> disable ipv6 mtrace
monitor protocol multicast routing-instance <text> disable ipv6
mtrace-detail
monitor protocol multicast routing-instance <text> disable ipv6 nsm-msg
monitor protocol multicast routing-instance <text> disable ipv6
register-msg
monitor protocol multicast routing-instance <text> disable ipv6 stats
monitor protocol multicast routing-instance <text> disable ipv6 vif
monitor protocol multicast routing-instance <text> disable mld
monitor protocol multicast routing-instance <text> enable
monitor protocol multicast routing-instance <text> enable igmp
monitor protocol multicast routing-instance <text> enable ip
monitor protocol multicast routing-instance <text> enable ip event
monitor protocol multicast routing-instance <text> enable ip fib-msg
monitor protocol multicast routing-instance <text> enable ip mrib-msg
monitor protocol multicast routing-instance <text> enable ip mrt
monitor protocol multicast routing-instance <text> enable ip mtrace
monitor protocol multicast routing-instance <text> enable ip mtrace-detail
monitor protocol multicast routing-instance <text> enable ip nsm-msg
monitor protocol multicast routing-instance <text> enable ip register-msg
monitor protocol multicast routing-instance <text> enable ip stats
monitor protocol multicast routing-instance <text> enable ip vif
monitor protocol multicast routing-instance <text> enable ipv6
monitor protocol multicast routing-instance <text> enable ipv6 event
monitor protocol multicast routing-instance <text> enable ipv6 fib-msg
monitor protocol multicast routing-instance <text> enable ipv6 mrib-msg
monitor protocol multicast routing-instance <text> enable ipv6 mrt
monitor protocol multicast routing-instance <text> enable ipv6 mtrace
monitor protocol multicast routing-instance <text> enable ipv6
mtrace-detail
monitor protocol multicast routing-instance <text> enable ipv6 nsm-msg
monitor protocol multicast routing-instance <text> enable ipv6 register-msg
monitor protocol multicast routing-instance <text> enable ipv6 stats
```

```
monitor protocol multicast routing-instance <text> enable ipv6 vif
monitor protocol multicast routing-instance <text> enable mld
monitor protocol multicast routing-instance <text> msdp
monitor protocol multicast routing-instance <text> msdp disable
monitor protocol multicast routing-instance <text> msdp enable
monitor protocol multicast routing-instance <text> pim
monitor protocol multicast routing-instance <text> pim disable
monitor protocol multicast routing-instance <text> pim disable ip
monitor protocol multicast routing-instance <text> pim disable ip events
monitor protocol multicast routing-instance <text> pim disable ip mfc
monitor protocol multicast routing-instance <text> pim disable ip mib
monitor protocol multicast routing-instance <text> pim disable ip mtrace
monitor protocol multicast routing-instance <text> pim disable ip nexthop
monitor protocol multicast routing-instance <text> pim disable ip nsm
monitor protocol multicast routing-instance <text> pim disable ip packet
monitor protocol multicast routing-instance <text> pim disable ip packet in
monitor protocol multicast routing-instance <text> pim disable ip packet
 out
monitor protocol multicast routing-instance <text> pim disable ip state
monitor protocol multicast routing-instance <text> pim disable ip timer
monitor protocol multicast routing-instance <text> pim disable ip timer
 assert
monitor protocol multicast routing-instance <text> pim disable ip timer
assert at
monitor protocol multicast routing-instance <text> pim disable ip timer bsr
monitor protocol multicast routing-instance <text> pim disable ip timer bsr
bst
monitor protocol multicast routing-instance <text> pim disable ip timer bsr
 crp
monitor protocol multicast routing-instance <text> pim disable ip timer
hello
monitor protocol multicast routing-instance <text> pim disable ip timer
hello ht
monitor protocol multicast routing-instance <text> pim disable ip timer
hello nlt
monitor protocol multicast routing-instance <text> pim disable ip timer
hello tht
monitor protocol multicast routing-instance <text> pim disable ip timer
 joinprune
monitor protocol multicast routing-instance <text> pim disable ip timer
 joinprune et
monitor protocol multicast routing-instance <text> pim disable ip timer
 joinprune jt
monitor protocol multicast routing-instance <text> pim disable ip timer
 joinprune kat
monitor protocol multicast routing-instance <text> pim disable ip timer
 joinprune ot
monitor protocol multicast routing-instance <text> pim disable ip timer
 joinprune ppt
monitor protocol multicast routing-instance <text> pim disable ip timer
 register
monitor protocol multicast routing-instance <text> pim disable ip timer
register rst
```

monitor protocol multicast routing-instance <text> pim disable ipv6 monitor protocol multicast routing-instance <text> pim disable ipv6 events monitor protocol multicast routing-instance <text> pim disable ipv6 mfc monitor protocol multicast routing-instance <text> pim disable ipv6 mib monitor protocol multicast routing-instance <text> pim disable ipv6 mtrace monitor protocol multicast routing-instance <text> pim disable ipv6 nexthop monitor protocol multicast routing-instance <text> pim disable ipv6 nsm monitor protocol multicast routing-instance <text> pim disable ipv6 packet monitor protocol multicast routing-instance <text> pim disable ipv6 packet in monitor protocol multicast routing-instance <text> pim disable ipv6 packet out monitor protocol multicast routing-instance <text> pim disable ipv6 state monitor protocol multicast routing-instance <text> pim disable ipv6 timer monitor protocol multicast routing-instance <text> pim disable ipv6 timer assert monitor protocol multicast routing-instance <text> pim disable ipv6 timer assert at monitor protocol multicast routing-instance <text> pim disable ipv6 timer bsr monitor protocol multicast routing-instance <text> pim disable ipv6 timer bsr bst monitor protocol multicast routing-instance <text> pim disable ipv6 timer bsr crp monitor protocol multicast routing-instance <text> pim disable ipv6 timer hello monitor protocol multicast routing-instance <text> pim disable ipv6 timer hello ht monitor protocol multicast routing-instance <text> pim disable ipv6 timer hello nlt monitor protocol multicast routing-instance <text> pim disable ipv6 timer hello tht monitor protocol multicast routing-instance <text> pim disable ipv6 timer joinprune monitor protocol multicast routing-instance <text> pim disable ipv6 timer joinprune et monitor protocol multicast routing-instance <text> pim disable ipv6 timer joinprune jt monitor protocol multicast routing-instance <text> pim disable ipv6 timer joinprune kat monitor protocol multicast routing-instance <text> pim disable ipv6 timer joinprune ot monitor protocol multicast routing-instance <text> pim disable ipv6 timer joinprune ppt monitor protocol multicast routing-instance <text> pim disable ipv6 timer register monitor protocol multicast routing-instance <text> pim disable ipv6 timer register rst monitor protocol multicast routing-instance <text> pim enable monitor protocol multicast routing-instance <text> pim enable ip monitor protocol multicast routing-instance <text> pim enable ip events monitor protocol multicast routing-instance <text> pim enable ip mfc monitor protocol multicast routing-instance <text> pim enable ip mib

monitor protocol multicast routing-instance <text> pim enable ip mtrace monitor protocol multicast routing-instance <text> pim enable ip nexthop monitor protocol multicast routing-instance <text> pim enable ip nsm monitor protocol multicast routing-instance <text> pim enable ip packet monitor protocol multicast routing-instance <text> pim enable ip packet in monitor protocol multicast routing-instance <text> pim enable ip packet out monitor protocol multicast routing-instance <text> pim enable ip state monitor protocol multicast routing-instance <text> pim enable ip timer monitor protocol multicast routing-instance <text> pim enable ip timer assert monitor protocol multicast routing-instance <text> pim enable ip timer assert at monitor protocol multicast routing-instance <text> pim enable ip timer bsr monitor protocol multicast routing-instance <text> pim enable ip timer bsr bst monitor protocol multicast routing-instance <text> pim enable ip timer bsr crp monitor protocol multicast routing-instance <text> pim enable ip timer hello monitor protocol multicast routing-instance <text> pim enable ip timer hello ht monitor protocol multicast routing-instance <text> pim enable ip timer hello nlt monitor protocol multicast routing-instance <text> pim enable ip timer hello tht monitor protocol multicast routing-instance <text> pim enable ip timer joinprune monitor protocol multicast routing-instance <text> pim enable ip timer joinprune et monitor protocol multicast routing-instance <text> pim enable ip timer joinprune jt monitor protocol multicast routing-instance <text> pim enable ip timer joinprune kat monitor protocol multicast routing-instance <text> pim enable ip timer joinprune ot monitor protocol multicast routing-instance <text> pim enable ip timer joinprune ppt monitor protocol multicast routing-instance <text> pim enable ip timer register monitor protocol multicast routing-instance <text> pim enable ip timer register rst monitor protocol multicast routing-instance <text> pim enable ipv6 monitor protocol multicast routing-instance <text> pim enable ipv6 events monitor protocol multicast routing-instance <text> pim enable ipv6 mfc monitor protocol multicast routing-instance <text> pim enable ipv6 mib monitor protocol multicast routing-instance <text> pim enable ipv6 mtrace monitor protocol multicast routing-instance <text> pim enable ipv6 nexthop monitor protocol multicast routing-instance <text> pim enable ipv6 nsm monitor protocol multicast routing-instance <text> pim enable ipv6 packet monitor protocol multicast routing-instance <text> pim enable ipv6 packet in monitor protocol multicast routing-instance <text> pim enable ipv6 packet out

monitor protocol multicast routing-instance <text> pim enable ipv6 state monitor protocol multicast routing-instance <text> pim enable ipv6 timer monitor protocol multicast routing-instance <text> pim enable ipv6 timer assert monitor protocol multicast routing-instance <text> pim enable ipv6 timer assert at monitor protocol multicast routing-instance <text> pim enable ipv6 timer bsr monitor protocol multicast routing-instance <text> pim enable ipv6 timer bsr bst monitor protocol multicast routing-instance <text> pim enable ipv6 timer bsr crp monitor protocol multicast routing-instance <text> pim enable ipv6 timer hello monitor protocol multicast routing-instance <text> pim enable ipv6 timer hello ht monitor protocol multicast routing-instance <text> pim enable ipv6 timer hello nlt monitor protocol multicast routing-instance <text> pim enable ipv6 timer hello tht monitor protocol multicast routing-instance <text> pim enable ipv6 timer joinprune monitor protocol multicast routing-instance <text> pim enable ipv6 timer joinprune et monitor protocol multicast routing-instance <text> pim enable ipv6 timer joinprune jt monitor protocol multicast routing-instance <text> pim enable ipv6 timer joinprune kat monitor protocol multicast routing-instance <text> pim enable ipv6 timer joinprune ot monitor protocol multicast routing-instance <text> pim enable ipv6 timer joinprune ppt monitor protocol multicast routing-instance <text> pim enable ipv6 timer register monitor protocol multicast routing-instance <text> pim enable ipv6 timer register rst monitor protocol nsm routing-instance <text> disable all monitor protocol nsm routing-instance <text> disable events monitor protocol nsm routing-instance <text> disable kernel monitor protocol nsm routing-instance <text> enable all monitor protocol nsm routing-instance <text> enable events monitor protocol nsm routing-instance <text> enable kernel monitor protocol ospf routing-instance <text> process <text> disable all monitor protocol ospf routing-instance <text> process <text> disable bfd monitor protocol ospf routing-instance <text> process <text> disable database-timer rate-limit monitor protocol ospf routing-instance <text> process <text> disable events monitor protocol ospf routing-instance <text> process <text> disable events abr monitor protocol ospf routing-instance <text> process <text> disable events asbr monitor protocol ospf routing-instance <text> process <text> disable events lsa

monitor protocol ospf routing-instance <text> process <text> disable events nssa monitor protocol ospf routing-instance <text> process <text> disable events os monitor protocol ospf routing-instance <text> process <text> disable events router monitor protocol ospf routing-instance <text> process <text> disable events vlink monitor protocol ospf routing-instance <text> process <text> disable ifsm monitor protocol ospf routing-instance <text> process <text> disable ifsm events monitor protocol ospf routing-instance <text> process <text> disable ifsm status monitor protocol ospf routing-instance <text> process <text> disable ifsm timers monitor protocol ospf routing-instance <text> process <text> disable lsa monitor protocol ospf routing-instance <text> process <text> disable lsa flooding monitor protocol ospf routing-instance <text> process <text> disable lsa generate monitor protocol ospf routing-instance <text> process <text> disable lsa install monitor protocol ospf routing-instance <text> process <text> disable lsa maxage monitor protocol ospf routing-instance <text> process <text> disable lsa refresh monitor protocol ospf routing-instance <text> process <text> disable nfsm monitor protocol ospf routing-instance <text> process <text> disable nfsm events monitor protocol ospf routing-instance <text> process <text> disable nfsm status monitor protocol ospf routing-instance <text> process <text> disable nfsm timers monitor protocol ospf routing-instance <text> process <text> disable nsm monitor protocol ospf routing-instance <text> process <text> disable nsm interface monitor protocol ospf routing-instance <text> process <text> disable packet monitor protocol ospf routing-instance <text> process <text> disable packet dd monitor protocol ospf routing-instance <text> process <text> disable packet dd detail monitor protocol ospf routing-instance <text> process <text> disable packet dd recv monitor protocol ospf routing-instance <text> process <text> disable packet dd recv detail monitor protocol ospf routing-instance <text> process <text> disable packet dd send monitor protocol ospf routing-instance <text> process <text> disable packet dd send detail monitor protocol ospf routing-instance <text> process <text> disable packet detail monitor protocol ospf routing-instance <text> process <text> disable packet hello

monitor protocol ospf routing-instance <text> process <text> disable packet hello detail monitor protocol ospf routing-instance <text> process <text> disable packet hello recv monitor protocol ospf routing-instance <text> process <text> disable packet hello recv detail monitor protocol ospf routing-instance <text> process <text> disable packet hello send monitor protocol ospf routing-instance <text> process <text> disable packet hello send detail monitor protocol ospf routing-instance <text> process <text> disable packet ls-ack monitor protocol ospf routing-instance <text> process <text> disable packet ls-ack detail monitor protocol ospf routing-instance <text> process <text> disable packet ls-ack recv monitor protocol ospf routing-instance <text> process <text> disable packet ls-ack recv detail monitor protocol ospf routing-instance <text> process <text> disable packet ls-ack send monitor protocol ospf routing-instance <text> process <text> disable packet ls-ack send detail monitor protocol ospf routing-instance <text> process <text> disable packet ls-request monitor protocol ospf routing-instance <text> process <text> disable packet ls-request detail monitor protocol ospf routing-instance <text> process <text> disable packet ls-request recv monitor protocol ospf routing-instance <text> process <text> disable packet ls-request recv detail monitor protocol ospf routing-instance <text> process <text> disable packet ls-request send monitor protocol ospf routing-instance <text> process <text> disable packet ls-request send detail monitor protocol ospf routing-instance <text> process <text> disable packet ls-update monitor protocol ospf routing-instance <text> process <text> disable packet ls-update detail monitor protocol ospf routing-instance <text> process <text> disable packet ls-update recv monitor protocol ospf routing-instance <text> process <text> disable packet ls-update recv detail monitor protocol ospf routing-instance <text> process <text> disable packet ls-update send monitor protocol ospf routing-instance <text> process <text> disable packet ls-update send detail monitor protocol ospf routing-instance <text> process <text> disable packet recv monitor protocol ospf routing-instance <text> process <text> disable packet send monitor protocol ospf routing-instance <text> process <text> disable rib monitor protocol ospf routing-instance <text> process <text> disable rib interface

monitor protocol ospf routing-instance <text> process <text> disable rib redistribute monitor protocol ospf routing-instance <text> process <text> disable route monitor protocol ospf routing-instance <text> process <text> disable route ase monitor protocol ospf routing-instance <text> process <text> disable route ia monitor protocol ospf routing-instance <text> process <text> disable route install monitor protocol ospf routing-instance <text> process <text> disable route spf monitor protocol ospf routing-instance <text> process <text> enable all monitor protocol ospf routing-instance <text> process <text> enable bfd monitor protocol ospf routing-instance <text> process <text> enable database-timer rate-limit monitor protocol ospf routing-instance <text> process <text> enable events monitor protocol ospf routing-instance <text> process <text> enable events abr monitor protocol ospf routing-instance <text> process <text> enable events asbr monitor protocol ospf routing-instance <text> process <text> enable events lsa monitor protocol ospf routing-instance <text> process <text> enable events nssa monitor protocol ospf routing-instance <text> process <text> enable events os monitor protocol ospf routing-instance <text> process <text> enable events router monitor protocol ospf routing-instance <text> process <text> enable events vlink monitor protocol ospf routing-instance <text> process <text> enable ifsm monitor protocol ospf routing-instance <text> process <text> enable ifsm events monitor protocol ospf routing-instance <text> process <text> enable ifsm status monitor protocol ospf routing-instance <text> process <text> enable ifsm timers monitor protocol ospf routing-instance <text> process <text> enable lsa monitor protocol ospf routing-instance <text> process <text> enable lsa flooding monitor protocol ospf routing-instance <text> process <text> enable lsa generate monitor protocol ospf routing-instance <text> process <text> enable lsa install monitor protocol ospf routing-instance <text> process <text> enable lsa maxage monitor protocol ospf routing-instance <text> process <text> enable lsa refresh monitor protocol ospf routing-instance <text> process <text> enable nfsm monitor protocol ospf routing-instance <text> process <text> enable nfsm events monitor protocol ospf routing-instance <text> process <text> enable nfsm status

monitor protocol ospf routing-instance <text> process <text> enable nfsm timers monitor protocol ospf routing-instance <text> process <text> enable nsm monitor protocol ospf routing-instance <text> process <text> enable nsm interface monitor protocol ospf routing-instance <text> process <text> enable packet monitor protocol ospf routing-instance <text> process <text> enable packet dd monitor protocol ospf routing-instance <text> process <text> enable packet dd detail monitor protocol ospf routing-instance <text> process <text> enable packet dd recv monitor protocol ospf routing-instance <text> process <text> enable packet dd recv detail monitor protocol ospf routing-instance <text> process <text> enable packet dd send monitor protocol ospf routing-instance <text> process <text> enable packet dd send detail monitor protocol ospf routing-instance <text> process <text> enable packet detail monitor protocol ospf routing-instance <text> process <text> enable packet hello monitor protocol ospf routing-instance <text> process <text> enable packet hello detail monitor protocol ospf routing-instance <text> process <text> enable packet hello recv monitor protocol ospf routing-instance <text> process <text> enable packet hello recv detail monitor protocol ospf routing-instance <text> process <text> enable packet hello send monitor protocol ospf routing-instance <text> process <text> enable packet hello send detail monitor protocol ospf routing-instance <text> process <text> enable packet ls-ack monitor protocol ospf routing-instance <text> process <text> enable packet ls-ack detail monitor protocol ospf routing-instance <text> process <text> enable packet ls-ack recv monitor protocol ospf routing-instance <text> process <text> enable packet ls-ack recv detail monitor protocol ospf routing-instance <text> process <text> enable packet ls-ack send monitor protocol ospf routing-instance <text> process <text> enable packet ls-ack send detail monitor protocol ospf routing-instance <text> process <text> enable packet ls-request monitor protocol ospf routing-instance <text> process <text> enable packet ls-request detail monitor protocol ospf routing-instance <text> process <text> enable packet ls-request recv monitor protocol ospf routing-instance <text> process <text> enable packet ls-request recv detail

monitor protocol ospf routing-instance <text> process <text> enable packet ls-request send monitor protocol ospf routing-instance <text> process <text> enable packet ls-request send detail monitor protocol ospf routing-instance <text> process <text> enable packet ls-update monitor protocol ospf routing-instance <text> process <text> enable packet ls-update detail monitor protocol ospf routing-instance <text> process <text> enable packet ls-update recv monitor protocol ospf routing-instance <text> process <text> enable packet ls-update recv detail monitor protocol ospf routing-instance <text> process <text> enable packet ls-update send monitor protocol ospf routing-instance <text> process <text> enable packet ls-update send detail monitor protocol ospf routing-instance <text> process <text> enable packet recv monitor protocol ospf routing-instance <text> process <text> enable packet send monitor protocol ospf routing-instance <text> process <text> enable rib monitor protocol ospf routing-instance <text> process <text> enable rib interface monitor protocol ospf routing-instance <text> process <text> enable rib redistribute monitor protocol ospf routing-instance <text> process <text> enable route monitor protocol ospf routing-instance <text> process <text> enable route ase monitor protocol ospf routing-instance <text> process <text> enable route ia monitor protocol ospf routing-instance <text> process <text> enable route install monitor protocol ospf routing-instance <text> process <text> enable route spf monitor protocol ospfv3 routing-instance <text> process <text> disable all monitor protocol ospfv3 routing-instance <text> process <text> disable bfd monitor protocol ospfv3 routing-instance <text> process <text> disable events monitor protocol ospfv3 routing-instance <text> process <text> disable events abr monitor protocol ospfv3 routing-instance <text> process <text> disable events asbr monitor protocol ospfv3 routing-instance <text> process <text> disable events nssa monitor protocol ospfv3 routing-instance <text> process <text> disable events os monitor protocol ospfv3 routing-instance <text> process <text> disable events router monitor protocol ospfv3 routing-instance <text> process <text> disable events vlink monitor protocol ospfv3 routing-instance <text> process <text> disable ifsm monitor protocol ospfv3 routing-instance <text> process <text> disable ifsm events

monitor protocol ospfv3 routing-instance <text> process <text> disable ifsm status monitor protocol ospfv3 routing-instance <text> process <text> disable ifsm timers monitor protocol ospfv3 routing-instance <text> process <text> disable lsa monitor protocol ospfv3 routing-instance <text> process <text> disable lsa flooding monitor protocol ospfv3 routing-instance <text> process <text> disable lsa generate monitor protocol ospfv3 routing-instance <text> process <text> disable lsa install monitor protocol ospfv3 routing-instance <text> process <text> disable lsa maxage monitor protocol ospfv3 routing-instance <text> process <text> disable lsa refresh monitor protocol ospfv3 routing-instance <text> process <text> disable nfsm monitor protocol ospfv3 routing-instance <text> process <text> disable nfsm events monitor protocol ospfv3 routing-instance <text> process <text> disable nfsm status monitor protocol ospfv3 routing-instance <text> process <text> disable nfsm timers monitor protocol ospfv3 routing-instance <text> process <text> disable nsm monitor protocol ospfv3 routing-instance <text> process <text> disable nsm interface monitor protocol ospfv3 routing-instance <text> process <text> disable packet monitor protocol ospfv3 routing-instance <text> process <text> disable packet dd monitor protocol ospfv3 routing-instance <text> process <text> disable packet dd detail monitor protocol ospfv3 routing-instance <text> process <text> disable packet dd recv monitor protocol ospfv3 routing-instance <text> process <text> disable packet dd recv detail monitor protocol ospfv3 routing-instance <text> process <text> disable packet dd send monitor protocol ospfv3 routing-instance <text> process <text> disable packet dd send detail monitor protocol ospfv3 routing-instance <text> process <text> disable packet detail monitor protocol ospfv3 routing-instance <text> process <text> disable packet hello monitor protocol ospfv3 routing-instance <text> process <text> disable packet hello detail monitor protocol ospfv3 routing-instance <text> process <text> disable packet hello recv monitor protocol ospfv3 routing-instance <text> process <text> disable packet hello recv detail monitor protocol ospfv3 routing-instance <text> process <text> disable packet hello send monitor protocol ospfv3 routing-instance <text> process <text> disable packet hello send detail

monitor protocol ospfv3 routing-instance <text> process <text> disable packet ls-ack monitor protocol ospfv3 routing-instance <text> process <text> disable packet ls-ack detail monitor protocol ospfv3 routing-instance <text> process <text> disable packet ls-ack recv monitor protocol ospfv3 routing-instance <text> process <text> disable packet ls-ack recv detail monitor protocol ospfv3 routing-instance <text> process <text> disable packet ls-ack send monitor protocol ospfv3 routing-instance <text> process <text> disable packet ls-ack send detail monitor protocol ospfv3 routing-instance <text> process <text> disable packet ls-request monitor protocol ospfv3 routing-instance <text> process <text> disable packet ls-request detail monitor protocol ospfv3 routing-instance <text> process <text> disable packet ls-request recv monitor protocol ospfv3 routing-instance <text> process <text> disable packet ls-request recv detail monitor protocol ospfv3 routing-instance <text> process <text> disable packet ls-request send monitor protocol ospfv3 routing-instance <text> process <text> disable packet ls-request send detail monitor protocol ospfv3 routing-instance <text> process <text> disable packet ls-update monitor protocol ospfv3 routing-instance <text> process <text> disable packet ls-update detail monitor protocol ospfv3 routing-instance <text> process <text> disable packet ls-update recv monitor protocol ospfv3 routing-instance <text> process <text> disable packet ls-update recv detail monitor protocol ospfv3 routing-instance <text> process <text> disable packet ls-update send monitor protocol ospfv3 routing-instance <text> process <text> disable packet ls-update send detail monitor protocol ospfv3 routing-instance <text> process <text> disable packet recv monitor protocol ospfv3 routing-instance <text> process <text> disable packet send monitor protocol ospfv3 routing-instance <text> process <text> disable retransmission monitor protocol ospfv3 routing-instance <text> process <text> disable rib monitor protocol ospfv3 routing-instance <text> process <text> disable rib interface monitor protocol ospfv3 routing-instance <text> process <text> disable rib redistribute monitor protocol ospfv3 routing-instance <text> process <text> disable route monitor protocol ospfv3 routing-instance <text> process <text> disable route ase monitor protocol ospfv3 routing-instance <text> process <text> disable route ia

monitor protocol ospfv3 routing-instance <text> process <text> disable route install monitor protocol ospfv3 routing-instance <text> process <text> disable route spf monitor protocol ospfv3 routing-instance <text> process <text> enable all monitor protocol ospfv3 routing-instance <text> process <text> enable bfd monitor protocol ospfv3 routing-instance <text> process <text> enable events monitor protocol ospfv3 routing-instance <text> process <text> enable events abr monitor protocol ospfv3 routing-instance <text> process <text> enable events asbr monitor protocol ospfv3 routing-instance <text> process <text> enable events nssa monitor protocol ospfv3 routing-instance <text> process <text> enable events os monitor protocol ospfv3 routing-instance <text> process <text> enable events router monitor protocol ospfv3 routing-instance <text> process <text> enable events vlink monitor protocol ospfv3 routing-instance <text> process <text> enable ifsm monitor protocol ospfv3 routing-instance <text> process <text> enable ifsm events monitor protocol ospfv3 routing-instance <text> process <text> enable ifsm status monitor protocol ospfv3 routing-instance <text> process <text> enable ifsm timers monitor protocol ospfv3 routing-instance <text> process <text> enable lsa monitor protocol ospfv3 routing-instance <text> process <text> enable lsa flooding monitor protocol ospfv3 routing-instance <text> process <text> enable lsa generate monitor protocol ospfv3 routing-instance <text> process <text> enable lsa install monitor protocol ospfv3 routing-instance <text> process <text> enable lsa maxage monitor protocol ospfv3 routing-instance <text> process <text> enable lsa refresh monitor protocol ospfv3 routing-instance <text> process <text> enable nfsm monitor protocol ospfv3 routing-instance <text> process <text> enable nfsm events monitor protocol ospfv3 routing-instance <text> process <text> enable nfsm status monitor protocol ospfv3 routing-instance <text> process <text> enable nfsm timers monitor protocol ospfv3 routing-instance <text> process <text> enable nsm monitor protocol ospfv3 routing-instance <text> process <text> enable nsm interface monitor protocol ospfv3 routing-instance <text> process <text> enable packet monitor protocol ospfv3 routing-instance <text> process <text> enable packet dd

monitor protocol ospfv3 routing-instance <text> process <text> enable packet dd detail monitor protocol ospfv3 routing-instance <text> process <text> enable packet dd recv monitor protocol ospfv3 routing-instance <text> process <text> enable packet dd recv detail monitor protocol ospfv3 routing-instance <text> process <text> enable packet dd send monitor protocol ospfv3 routing-instance <text> process <text> enable packet dd send detail monitor protocol ospfv3 routing-instance <text> process <text> enable packet detail monitor protocol ospfv3 routing-instance <text> process <text> enable packet hello monitor protocol ospfv3 routing-instance <text> process <text> enable packet hello detail monitor protocol ospfv3 routing-instance <text> process <text> enable packet hello recv monitor protocol ospfv3 routing-instance <text> process <text> enable packet hello recv detail monitor protocol ospfv3 routing-instance <text> process <text> enable packet hello send monitor protocol ospfv3 routing-instance <text> process <text> enable packet hello send detail monitor protocol ospfv3 routing-instance <text> process <text> enable packet ls-ack monitor protocol ospfv3 routing-instance <text> process <text> enable packet ls-ack detail monitor protocol ospfv3 routing-instance <text> process <text> enable packet ls-ack recv monitor protocol ospfv3 routing-instance <text> process <text> enable packet ls-ack recv detail monitor protocol ospfv3 routing-instance <text> process <text> enable packet ls-ack send monitor protocol ospfv3 routing-instance <text> process <text> enable packet ls-ack send detail monitor protocol ospfv3 routing-instance <text> process <text> enable packet ls-request monitor protocol ospfv3 routing-instance <text> process <text> enable packet ls-request detail monitor protocol ospfv3 routing-instance <text> process <text> enable packet ls-request recv monitor protocol ospfv3 routing-instance <text> process <text> enable packet ls-request recv detail monitor protocol ospfv3 routing-instance <text> process <text> enable packet ls-request send monitor protocol ospfv3 routing-instance <text> process <text> enable packet ls-request send detail monitor protocol ospfv3 routing-instance <text> process <text> enable packet ls-update monitor protocol ospfv3 routing-instance <text> process <text> enable packet ls-update detail

monitor protocol ospfv3 routing-instance <text> process <text> enable packet ls-update recv monitor protocol ospfv3 routing-instance <text> process <text> enable packet ls-update recv detail monitor protocol ospfv3 routing-instance <text> process <text> enable packet ls-update send monitor protocol ospfv3 routing-instance <text> process <text> enable packet ls-update send detail monitor protocol ospfv3 routing-instance <text> process <text> enable packet recv monitor protocol ospfv3 routing-instance <text> process <text> enable packet send monitor protocol ospfv3 routing-instance <text> process <text> enable retransmission monitor protocol ospfv3 routing-instance <text> process <text> enable rib monitor protocol ospfv3 routing-instance <text> process <text> enable rib interface monitor protocol ospfv3 routing-instance <text> process <text> enable rib redistribute monitor protocol ospfv3 routing-instance <text> process <text> enable route monitor protocol ospfv3 routing-instance <text> process <text> enable route ase monitor protocol ospfv3 routing-instance <text> process <text> enable route ia monitor protocol ospfv3 routing-instance <text> process <text> enable route install monitor protocol ospfv3 routing-instance <text> process <text> enable route spf monitor protocol rib routing-instance <text> disable all monitor protocol rib routing-instance <text> disable events monitor protocol rib routing-instance <text> disable packet monitor protocol rib routing-instance <text> enable all monitor protocol rib routing-instance <text> enable events monitor protocol rib routing-instance <text> enable packet monitor protocol rib routing-instance <text> enable packet recv monitor protocol rib routing-instance <text> enable packet recv detail monitor protocol rib routing-instance <text> enable packet send monitor protocol rib routing-instance <text> enable packet send detail monitor protocol rip routing-instance <text> disable all monitor protocol rip routing-instance <text> disable events monitor protocol rip routing-instance <text> disable packet all monitor protocol rip routing-instance <text> disable packet detail monitor protocol rip routing-instance <text> disable packet recv monitor protocol rip routing-instance <text> disable packet send monitor protocol rip routing-instance <text> enable all monitor protocol rip routing-instance <text> enable events monitor protocol rip routing-instance <text> enable packet all monitor protocol rip routing-instance <text> enable packet detail monitor protocol rip routing-instance <text> enable packet recv monitor protocol rip routing-instance <text> enable packet send monitor protocol ripng routing-instance <text> disable events monitor protocol ripng routing-instance <text> disable packet monitor protocol ripng routing-instance <text> disable packet recv

```
monitor protocol ripng routing-instance <text> disable packet send
monitor protocol ripng routing-instance <text> enable events
monitor protocol ripng routing-instance <text> enable packet
monitor protocol ripng routing-instance <text> enable packet recv
monitor protocol ripng routing-instance <text> enable packet send
mtrace <text> routing-instance <text>
mtrace <text> routing-instance <text> destination <text>
mtrace <text> routing-instance <text> destination <text> detail
mtrace <text> routing-instance <text> destination <text> group <text>
mtrace <text> routing-instance <text> destination <text> group <text>
 detail
mtrace <text> routing-instance <text> detail
mtrace <text> routing-instance <text> group <text>
mtrace <text> routing-instance <text> group <text> destination <text>
mtrace <text> routing-instance <text> group <text> destination <text>
 detail
mtrace <text> routing-instance <text> group <text> detail
ping <text> routing-instance <text>
reset dhcp server lease routing-instance <text> ip <text>
reset dhcp server lease routing-instance <text> mac <text>
reset dhcp server leases routing-instance <text>
reset dhcpv6 server lease routing-instance <text> ipv6 <text>
reset dhcpv6 server leases routing-instance <text>
reset dns forwarding all routing-instance <text>
reset dns forwarding cache routing-instance <text>
reset ip bgp routing-instance <text> <text>
reset ip bgp routing-instance <text> <text> ipv4 unicast soft
reset ip bgp routing-instance <text> <text> ipv4 unicast soft in
reset ip bgp routing-instance <text> <text> ipv4 unicast soft in
 prefix-filter
reset ip bgp routing-instance <text> <text> ipv4 unicast soft out
reset ip bgp routing-instance <text> <text> ipv6 unicast soft
reset ip bgp routing-instance <text> <text> ipv6 unicast soft in
reset ip bgp routing-instance <text> <text> ipv6 unicast soft in
prefix-filter
reset ip bgp routing-instance <text> <text> ipv6 unicast soft out
reset ip bgp routing-instance <text> <text> soft
reset ip bgp routing-instance <text> <text> soft in
reset ip bgp routing-instance <text> <text> soft in prefix-filter
reset ip bgp routing-instance <text> <text> soft out
reset ip bgp routing-instance <text> all
reset ip bgp routing-instance <text> all ipv4 unicast
reset ip bgp routing-instance <text> all ipv4 unicast soft
reset ip bgp routing-instance <text> all ipv4 unicast soft in
reset ip bgp routing-instance <text> all ipv4 unicast soft in prefix-filter
reset ip bgp routing-instance <text> all ipv4 unicast soft out
reset ip bgp routing-instance <text> all ipv6 unicast
reset ip bgp routing-instance <text> all ipv6 unicast soft
reset ip bgp routing-instance <text> all ipv6 unicast soft in
reset ip bgp routing-instance <text> all ipv6 unicast soft in prefix-filter
reset ip bgp routing-instance <text> all ipv6 unicast soft out
reset ip bgp routing-instance <text> all soft
reset ip bgp routing-instance <text> all soft in
```

```
reset ip bgp routing-instance <text> all soft in prefix-filter
reset ip bgp routing-instance <text> all soft out
reset ip bgp routing-instance <text> dampening
reset ip bgp routing-instance <text> dampening <text>
reset ip bgp routing-instance <text> external
reset ip bgp routing-instance <text> external ipv4 unicast soft
reset ip bgp routing-instance <text> external ipv4 unicast soft in
reset ip bgp routing-instance <text> external ipv4 unicast soft in
prefix-filter
reset ip bgp routing-instance <text> external ipv4 unicast soft out
reset ip bgp routing-instance <text> external ipv6 unicast soft
reset ip bgp routing-instance <text> external ipv6 unicast soft in
reset ip bgp routing-instance <text> external ipv6 unicast soft in
 prefix-filter
reset ip bgp routing-instance <text> external ipv6 unicast soft out
reset ip bgp routing-instance <text> external soft
reset ip bgp routing-instance <text> external soft in
reset ip bgp routing-instance <text> external soft in prefix-filter
reset ip bgp routing-instance <text> external soft out
reset ip bgp routing-instance <text> interface <text> vrrp-failover
vrrp-group <text> state backup
reset ip bgp routing-instance <text> interface <text> vrrp-failover
vrrp-group <text> state fault
reset ip bgp routing-instance <text> interface <text> vrrp-failover
vrrp-group <text> state invalid
reset ip bgp routing-instance <text> interface <text> vrrp-failover
vrrp-group <text> state master
reset ip bgp routing-instance <text> ipv4 unicast dampening
reset ip bgp routing-instance <text> ipv4 unicast dampening <text>
reset ip bgp routing-instance <text> ipv6 unicast dampening
reset ip bgp routing-instance <text> ipv6 unicast dampening <text>
reset ip bgp routing-instance <text> peer-group <text>
reset ip bgp routing-instance <text> peer-group <text> ipv4 unicast soft
reset ip bgp routing-instance <text> peer-group <text> ipv4 unicast soft in
reset ip bgp routing-instance <text> peer-group <text> ipv4 unicast soft in
 prefix-filter
reset ip bgp routing-instance <text> peer-group <text> ipv4 unicast soft
 out
reset ip bgp routing-instance <text> peer-group <text> ipv6 unicast soft
reset ip bgp routing-instance <text> peer-group <text> ipv6 unicast soft in
reset ip bgp routing-instance <text> peer-group <text> ipv6 unicast soft in
 prefix-filter
reset ip bgp routing-instance <text> peer-group <text> ipv6 unicast soft
 out
reset ip bgp routing-instance <text> peer-group <text> soft
reset ip bgp routing-instance <text> peer-group <text> soft in
reset ip bgp routing-instance <text> peer-group <text> soft in
 prefix-filter
reset ip bgp routing-instance <text> peer-group <text> soft out
reset ip igmp routing-instance <text>
reset ip igmp routing-instance <text> group
reset ip igmp routing-instance <text> group <text>
reset ip mroute routing-instance <text>
```

```
reset ip mroute routing-instance <text> group <text>
reset ip mroute routing-instance <text> group <text> source <text>
reset ip mroute routing-instance <text> group <text> source <text> pim
 <text>
reset ip mroute routing-instance <text> pim <text>
reset ip mroute routing-instance <text> statistics
reset ip mroute routing-instance <text> statistics group <text>
reset ip mroute routing-instance <text> statistics group <text> source
 <text>
reset ip msdp peer routing-instance <text> <text>
reset ip msdp sa-cache routing-instance <text>
reset ip msdp sa-cache routing-instance <text> <text>
reset ip ospf routing-instance <text> process <text>
reset ip pim sparse-mode bsr rp-set routing-instance <text>
reset ip rip routing-instance <text> route <text>
reset ip rip routing-instance <text> route all
reset ip rip routing-instance <text> route bgp
reset ip rip routing-instance <text> route connected
reset ip rip routing-instance <text> route kernel
reset ip rip routing-instance <text> route ospf
reset ip rip routing-instance <text> route rip
reset ip rip routing-instance <text> route static
reset ipv6 mld routing-instance <text>
reset ipv6 mld routing-instance <text> group
reset ipv6 mld routing-instance <text> group <text>
reset ipv6 mroute routing-instance <text>
reset ipv6 mroute routing-instance <text> group <text>
reset ipv6 mroute routing-instance <text> group <text> source <text>
reset ipv6 mroute routing-instance <text> group <text> source <text> pim
 <text>
reset ipv6 mroute routing-instance <text> pim <text>
reset ipv6 mroute routing-instance <text> statistics
reset ipv6 mroute routing-instance <text> statistics group <text>
reset ipv6 mroute routing-instance <text> statistics group <text> source
 <text>
reset ipv6 ospfv3 routing-instance <text> process <text>
reset ipv6 pim sparse-mode bsr rp-set routing-instance <text>
reset ipv6 ripng routing-instance <text> route <text>
reset ipv6 ripng routing-instance <text> route all
reset ipv6 ripng routing-instance <text> route bgp
reset ipv6 ripng routing-instance <text> route connected
reset ipv6 ripng routing-instance <text> route kernel
reset ipv6 ripng routing-instance <text> route ospfv3
reset ipv6 ripng routing-instance <text> route ripng
reset ipv6 ripng routing-instance <text> route static
restart dhcp relay-agent routing-instance <text>
restart dhcp server routing-instance <text>
restart dhcpv6 relay-agent routing-instance <text>
restart dhcpv6 server routing-instance <text>
restart twamp server routing-instance <text>
show bfd routing-instance <text>
show bfd routing-instance <text> session
show bfd routing-instance <text> session detail
```

```
show bfd routing-instance <text> session detail <text>
show dataplane address routing-instance <text>
show dataplane route routing-instance <text>
show dataplane route routing-instance <text> <text>
show dataplane route routing-instance <text> summary
show dataplane route routing-instance <text> table <text>
show dataplane route6 routing-instance <text>
show dataplane route6 routing-instance <text> <text>
show dataplane route6 routing-instance <text> summary
show dataplane route6 routing-instance <text> table <text>
show dataplane statistics routing-instance <text> arp
show dataplane statistics routing-instance <text> icmp
show dataplane statistics routing-instance <text> icmp6
show dataplane statistics routing-instance <text> ip
show dataplane statistics routing-instance <text> ip6
show dataplane statistics routing-instance <text> nd6
show dhcp server leases routing-instance <text>
show dhcp server leases routing-instance <text> expired
show dhcp server leases routing-instance <text> pool <text>
show dhcp server leases routing-instance <text> pool <text> expired
show dhcp server statistics routing-instance <text>
show dhcp server statistics routing-instance <text> pool <text>
show dhcpv6 relay-agent routing-instance <text> status
show dhcpv6 server leases routing-instance <text>
show dhcpv6 server leases routing-instance <text> detail
show dhcpv6 server leases routing-instance <text> expired
show dhcpv6 server leases routing-instance <text> expired detail
show dhcpv6 server status routing-instance <text>
show dns dynamic status routing-instance <text>
show dns forwarding nameservers routing-instance <text>
show dns forwarding statistics routing-instance <text>
show interfaces <text> routing-instance <text>
show interfaces routing-instance <text>
show interfaces routing-instance <text> counters
show interfaces routing-instance <text> detail
show ip bgp routing-instance <text>
show ip bgp routing-instance <text> <text>
show ip bgp routing-instance <text> <text> longer-prefixes
show ip bgp routing-instance <text> cidr-only
show ip bgp routing-instance <text> cluster-ids
show ip bgp routing-instance <text> community
show ip bgp routing-instance <text> community <text>
show ip bgp routing-instance <text> community <text> <text>
show ip bgp routing-instance <text> community <text> <text> <text>
show ip bgp routing-instance <text> community <text> <text> <text>
  exact-match
show ip bgp routing-instance <text> community <text> <text <text> <text <text
show ip bgp routing-instance <text> community <text> <text 
  exact-match
show ip bgp routing-instance <text> community <text> <text> exact-match
show ip bgp routing-instance <text> community <text> exact-match
show ip bgp routing-instance <text> community-list <text>
show ip bgp routing-instance <text> community-list <text> exact-match
```

```
show ip bgp routing-instance <text> dampening dampened-paths
show ip bgp routing-instance <text> dampening flap-statistics
show ip bgp routing-instance <text> extcommunity-list <text>
show ip bgp routing-instance <text> extcommunity-list <text> exact-match
show ip bgp routing-instance <text> filter-list <text>
show ip bgp routing-instance <text> ipv4 unicast
show ip bgp routing-instance <text> ipv4 unicast <text>
show ip bgp routing-instance <text> ipv4 unicast <text> longer-prefixes
show ip bgp routing-instance <text> ipv4 unicast cidr-only
show ip bgp routing-instance <text> ipv4 unicast community
show ip bgp routing-instance <text> ipv4 unicast community <text>
show ip bgp routing-instance <text> ipv4 unicast community <text>
 exact-match
show ip bgp routing-instance <text> ipv4 unicast community <text> <text>
show ip bgp routing-instance <text> ipv4 unicast community <text> <text>
 exact-match
show ip bgp routing-instance <text> ipv4 unicast community <text> <text>
 <text>
show ip bgp routing-instance <text> ipv4 unicast community <text> <text>
 <text> exact-match
show ip bgp routing-instance <text> ipv4 unicast community <text> <text>
 <text> <text>
show ip bgp routing-instance <text> ipv4 unicast community <text> <text>
<text> <text> exact-match
show ip bgp routing-instance <text> ipv4 unicast community-list <text>
show ip bgp routing-instance <text> ipv4 unicast community-list <text>
 exact-match
show ip bgp routing-instance <text> ipv4 unicast dampening dampened-paths
show ip bgp routing-instance <text> ipv4 unicast dampening flap-statistics
show ip bgp routing-instance <text> ipv4 unicast extcommunity-list <text>
show ip bgp routing-instance <text> ipv4 unicast extcommunity-list <text>
exact-match
show ip bgp routing-instance <text> ipv4 unicast filter-list <text>
show ip bgp routing-instance <text> ipv4 unicast neighbors
show ip bgp routing-instance <text> ipv4 unicast neighbors <text>
show ip bgp routing-instance <text> ipv4 unicast neighbors <text>
 advertised-routes
show ip bgp routing-instance <text> ipv4 unicast neighbors <text> received
prefix-filter
show ip bgp routing-instance <text> ipv4 unicast neighbors <text>
received-routes
show ip bgp routing-instance <text> ipv4 unicast neighbors <text> routes
show ip bgp routing-instance <text> ipv4 unicast prefix-list <text>
show ip bgp routing-instance <text> ipv4 unicast regexp <text>
show ip bgp routing-instance <text> ipv4 unicast route-map <text>
show ip bgp routing-instance <text> ipv4 unicast summary
show ip bgp routing-instance <text> ipv6 unicast
show ip bgp routing-instance <text> ipv6 unicast <text>
show ip bgp routing-instance <text> ipv6 unicast <text> longer-prefixes
show ip bgp routing-instance <text> ipv6 unicast community
show ip bgp routing-instance <text> ipv6 unicast community <text>
show ip bgp routing-instance <text> ipv6 unicast community <text>
exact-match
```

show ip bgp routing-instance <text> ipv6 unicast community <text> <text> show ip bgp routing-instance <text> ipv6 unicast community <text> <text> exact-match show ip bgp routing-instance <text> ipv6 unicast community <text> <text> <text> show ip bgp routing-instance <text> ipv6 unicast community <text> <text> <text> exact-match show ip bgp routing-instance <text> ipv6 unicast community <text> <text> <text> <text> show ip bgp routing-instance <text> ipv6 unicast community <text> <text> <text> <text> exact-match show ip bgp routing-instance <text> ipv6 unicast community-list <text> show ip bgp routing-instance <text> ipv6 unicast community-list <text> exact-match show ip bgp routing-instance <text> ipv6 unicast dampening dampened-paths show ip bgp routing-instance <text> ipv6 unicast dampening flap-statistics show ip bgp routing-instance <text> ipv6 unicast extcommunity-list <text> show ip bgp routing-instance <text> ipv6 unicast extcommunity-list <text> exact-match show ip bgp routing-instance <text> ipv6 unicast filter-list <text> show ip bgp routing-instance <text> ipv6 unicast neighbors show ip bgp routing-instance <text> ipv6 unicast neighbors <text> show ip bgp routing-instance <text> ipv6 unicast neighbors <text> advertised-routes show ip bgp routing-instance <text> ipv6 unicast neighbors <text> received-routes show ip bgp routing-instance <text> ipv6 unicast neighbors <text> routes show ip bgp routing-instance <text> ipv6 unicast prefix-list <text> show ip bgp routing-instance <text> ipv6 unicast regexp <text> show ip bgp routing-instance <text> ipv6 unicast summary show ip bgp routing-instance <text> neighbors show ip bgp routing-instance <text> neighbors <text> show ip bgp routing-instance <text> neighbors <text> advertised-routes show ip bgp routing-instance <text> neighbors <text> received prefix-filter show ip bgp routing-instance <text> neighbors <text> received-routes show ip bgp routing-instance <text> neighbors <text> routes show ip bgp routing-instance <text> neighbors <text> statistics show ip bgp routing-instance <text> prefix-list <text> show ip bgp routing-instance <text> regexp <text> show ip bgp routing-instance <text> route-map <text> show ip bgp routing-instance <text> summary show ip bgp routing-instance all <text> show ip bgp routing-instance all <text> longer-prefixes show ip bgp routing-instance all cidr-only show ip bgp routing-instance all cluster-ids show ip bgp routing-instance all community show ip bgp routing-instance all community <text> show ip bgp routing-instance all community <text> <text> show ip bgp routing-instance all community <text> <text> <text> show ip bgp routing-instance all community <text> <text <text> <text <te show ip bgp routing-instance all community <text> <text <text> <text <te exact-match show ip bgp routing-instance all community <text> <text> <text> exact-match

```
show ip bgp routing-instance all community <text> <text> exact-match
show ip bgp routing-instance all community <text> exact-match
show ip bgp routing-instance all community-list <text>
show ip bgp routing-instance all community-list <text> exact-match
show ip bgp routing-instance all dampening dampened-paths
show ip bgp routing-instance all dampening flap-statistics
show ip bgp routing-instance all extcommunity-list <text>
show ip bgp routing-instance all extcommunity-list <text> exact-match
show ip bgp routing-instance all filter-list <text>
show ip bgp routing-instance all ipv4 unicast
show ip bgp routing-instance all ipv4 unicast <text>
show ip bgp routing-instance all ipv4 unicast <text> longer-prefixes
show ip bgp routing-instance all ipv4 unicast cidr-only
show ip bgp routing-instance all ipv4 unicast community
show ip bgp routing-instance all ipv4 unicast community <text>
show ip bgp routing-instance all ipv4 unicast community <text> <text>
show ip bgp routing-instance all ipv4 unicast community <text> <text>
exact-match
show ip bgp routing-instance all ipv4 unicast community <text> <text>
 <text>
show ip bgp routing-instance all ipv4 unicast community <text> <text>
 <text> exact-match
show ip bgp routing-instance all ipv4 unicast community <text> <text>
 <text> <text>
show ip bgp routing-instance all ipv4 unicast community <text> <text>
 <text> <text> exact-match
show ip bgp routing-instance all ipv4 unicast community <text> exact-match
show ip bgp routing-instance all ipv4 unicast community-list <text>
show ip bgp routing-instance all ipv4 unicast community-list <text>
 exact-match
show ip bgp routing-instance all ipv4 unicast dampening dampened-paths
show ip bgp routing-instance all ipv4 unicast dampening flap-statistics
show ip bgp routing-instance all ipv4 unicast extcommunity-list <text>
show ip bgp routing-instance all ipv4 unicast extcommunity-list <text>
 exact-match
show ip bgp routing-instance all ipv4 unicast filter-list <text>
show ip bgp routing-instance all ipv4 unicast neighbors
show ip bgp routing-instance all ipv4 unicast neighbors <text>
show ip bgp routing-instance all ipv4 unicast neighbors <text>
advertised-routes
show ip bgp routing-instance all ipv4 unicast neighbors <text> received
prefix-filter
show ip bgp routing-instance all ipv4 unicast neighbors <text>
received-routes
show ip bgp routing-instance all ipv4 unicast neighbors <text> routes
show ip bgp routing-instance all ipv4 unicast prefix-list <text>
show ip bgp routing-instance all ipv4 unicast regexp <text>
show ip bgp routing-instance all ipv4 unicast route-map <text>
show ip bgp routing-instance all ipv4 unicast summary
show ip bgp routing-instance all ipv6 unicast
show ip bgp routing-instance all ipv6 unicast <text>
show ip bgp routing-instance all ipv6 unicast <text> longer-prefixes
show ip bgp routing-instance all ipv6 unicast community
```

```
show ip bgp routing-instance all ipv6 unicast community <text>
show ip bgp routing-instance all ipv6 unicast community <text> <text>
show ip bgp routing-instance all ipv6 unicast community <text> <text>
 exact-match
show ip bgp routing-instance all ipv6 unicast community <text> <text>
 <text>
show ip bgp routing-instance all ipv6 unicast community <text> <text>
 <text> exact-match
show ip bgp routing-instance all ipv6 unicast community <text> <text>
<text> <text>
show ip bgp routing-instance all ipv6 unicast community <text> <text>
 <text> <text> exact-match
show ip bgp routing-instance all ipv6 unicast community <text> exact-match
show ip bgp routing-instance all ipv6 unicast community-list <text>
show ip bgp routing-instance all ipv6 unicast community-list <text>
exact-match
show ip bgp routing-instance all ipv6 unicast dampening dampened-paths
show ip bgp routing-instance all ipv6 unicast dampening flap-statistics
show ip bgp routing-instance all ipv6 unicast extcommunity-list <text>
show ip bgp routing-instance all ipv6 unicast extcommunity-list <text>
exact-match
show ip bgp routing-instance all ipv6 unicast filter-list <text>
show ip bgp routing-instance all ipv6 unicast neighbors
show ip bgp routing-instance all ipv6 unicast neighbors <text>
show ip bgp routing-instance all ipv6 unicast neighbors <text>
 advertised-routes
show ip bgp routing-instance all ipv6 unicast neighbors <text>
received-routes
show ip bgp routing-instance all ipv6 unicast neighbors <text> routes
show ip bgp routing-instance all ipv6 unicast prefix-list <text>
show ip bgp routing-instance all ipv6 unicast regexp <text>
show ip bgp routing-instance all ipv6 unicast summary
show ip bgp routing-instance all neighbors
show ip bgp routing-instance all neighbors <text>
show ip bgp routing-instance all neighbors <text> received prefix-filter
show ip bgp routing-instance all neighbors <text> routes
show ip bgp routing-instance all neighbors <text> statistics
show ip bgp routing-instance all prefix-list <text>
show ip bgp routing-instance all regexp <text>
show ip bgp routing-instance all route-map <text>
show ip bgp routing-instance all summary
show ip igmp groups routing-instance <text>
show ip igmp groups routing-instance <text> detail
show ip igmp groups routing-instance <text> group-address <text>
show ip igmp groups routing-instance <text> group-address <text> detail
show ip igmp interface routing-instance <text>
show ip igmp ssm-map routing-instance <text>
show ip igmp ssm-map routing-instance <text> <text>
show ip mroute routing-instance <text>
show ip mroute routing-instance <text> count
show ip mroute routing-instance <text> dense
show ip mroute routing-instance <text> dense count
show ip mroute routing-instance <text> dense summary
```

```
show ip mroute routing-instance <text> group <text>
show ip mroute routing-instance <text> group <text> count
show ip mroute routing-instance <text> group <text> dense
show ip mroute routing-instance <text> group <text> dense count
show ip mroute routing-instance <text> group <text> dense summary
show ip mroute routing-instance <text> group <text> source <text>
show ip mroute routing-instance <text> group <text> source <text> count
show ip mroute routing-instance <text> group <text> source <text> dense
show ip mroute routing-instance <text> group <text> source <text> dense
count
show ip mroute routing-instance <text> group <text> source <text> dense
summary
show ip mroute routing-instance <text> group <text> source <text> sparse
show ip mroute routing-instance <text> group <text> source <text> sparse
 count
show ip mroute routing-instance <text> group <text> source <text> sparse
summary
show ip mroute routing-instance <text> group <text> source <text> summary
show ip mroute routing-instance <text> group <text> sparse
show ip mroute routing-instance <text> group <text> sparse count
show ip mroute routing-instance <text> group <text> sparse summary
show ip mroute routing-instance <text> group <text> summary
show ip mroute routing-instance <text> source <text>
show ip mroute routing-instance <text> source <text> count
show ip mroute routing-instance <text> source <text> dense
show ip mroute routing-instance <text> source <text> dense count
show ip mroute routing-instance <text> source <text> dense summary
show ip mroute routing-instance <text> source <text> sparse
show ip mroute routing-instance <text> source <text> sparse count
show ip mroute routing-instance <text> source <text> sparse summary
show ip mroute routing-instance <text> source <text> summary
show ip mroute routing-instance <text> sparse
show ip mroute routing-instance <text> sparse count
show ip mroute routing-instance <text> sparse summary
show ip mroute routing-instance <text> summary
show ip msdp peer routing-instance <text>
show ip msdp peer routing-instance <text> <text>
show ip msdp sa-cache routing-instance <text>
show ip msdp sa-cache routing-instance <text> summary
show ip msdp summary routing-instance <text>
show ip multicast interface routing-instance <text>
show ip multicast mrinfo <text> routing-instance <text>
show ip multicast mrinfo <text> routing-instance <text> <text>
show ip ospf routing-instance <text> process <text>
show ip ospf routing-instance <text> process <text> border-routers
show ip ospf routing-instance <text> process <text> database
show ip ospf routing-instance <text> process <text> database adv-router
 <text>
show ip ospf routing-instance <text> process <text> database asbr-summary
show ip ospf routing-instance <text> process <text> database asbr-summary
 adv-router <text>
show ip ospf routing-instance <text> process <text> database asbr-summary
<text>
```

show ip ospf routing-instance <text> process <text> database asbr-summary <text> adv-router <text> show ip ospf routing-instance <text> process <text> database asbr-summary <text> self-originate show ip ospf routing-instance <text> process <text> database external show ip ospf routing-instance <text> process <text> database external adv-router <text> show ip ospf routing-instance <text> process <text> database external <text> show ip ospf routing-instance <text> process <text> database external <text> adv-router <text> show ip ospf routing-instance <text> process <text> database external <text> self-originate show ip ospf routing-instance <text> process <text> database max-age show ip ospf routing-instance <text> process <text> database network show ip ospf routing-instance <text> process <text> database network adv-router <text> show ip ospf routing-instance <text> process <text> database network <text> show ip ospf routing-instance <text> process <text> database network <text> adv-router <text> show ip ospf routing-instance <text> process <text> database network <text> self-originate show ip ospf routing-instance <text> process <text> database nssa-external show ip ospf routing-instance <text> process <text> database nssa-external adv-router <text> show ip ospf routing-instance <text> process <text> database nssa-external <text> show ip ospf routing-instance <text> process <text> database nssa-external <text> adv-router <text> show ip ospf routing-instance <text> process <text> database nssa-external <text> self-originate show ip ospf routing-instance <text> process <text> database opaque-area show ip ospf routing-instance <text> process <text> database opaque-area adv-router <text> show ip ospf routing-instance <text> process <text> database opaque-area <text> show ip ospf routing-instance <text> process <text> database opaque-area <text> adv-router <text> show ip ospf routing-instance <text> process <text> database opaque-area <text> self-originate show ip ospf routing-instance <text> process <text> database opaque-as show ip ospf routing-instance <text> process <text> database opaque-as adv-router <text> show ip ospf routing-instance <text> process <text> database opaque-as <text> show ip ospf routing-instance <text> process <text> database opaque-as <text> adv-router <text> show ip ospf routing-instance <text> process <text> database opaque-as <text> self-originate show ip ospf routing-instance <text> process <text> database opaque-link show ip ospf routing-instance <text> process <text> database opaque-link adv-router <text>

show ip ospf routing-instance <text> process <text> database opaque-link <text> show ip ospf routing-instance <text> process <text> database opaque-link <text> adv-router <text> show ip ospf routing-instance <text> process <text> database opaque-link <text> self-originate show ip ospf routing-instance <text> process <text> database router show ip ospf routing-instance <text> process <text> database router adv-router <text> show ip ospf routing-instance <text> process <text> database router <text> show ip ospf routing-instance <text> process <text> database router <text> adv-router <text> show ip ospf routing-instance <text> process <text> database router <text> self-originate show ip ospf routing-instance <text> process <text> database self-originate show ip ospf routing-instance <text> process <text> database summary show ip ospf routing-instance <text> process <text> database summary adv-router <text> show ip ospf routing-instance <text> process <text> database summary self-originate show ip ospf routing-instance <text> process <text> database summary <text> show ip ospf routing-instance <text> process <text> database summary <text> adv-router <text> show ip ospf routing-instance <text> process <text> database summary <text> self-originate show ip ospf routing-instance <text> process <text> interface show ip ospf routing-instance <text> process <text> interface <text> show ip ospf routing-instance <text> process <text> neighbor show ip ospf routing-instance <text> process <text> neighbor <text> show ip ospf routing-instance <text> process <text> neighbor address <text> show ip ospf routing-instance <text> process <text> neighbor detail show ip ospf routing-instance <text> process <text> neighbor interface <text> show ip ospf routing-instance <text> process <text> neighbor summary show ip ospf routing-instance <text> process <text> opaque-area show ip ospf routing-instance <text> process <text> opaque-as show ip ospf routing-instance <text> process <text> opaque-link show ip ospf routing-instance <text> process <text> route show ip ospf routing-instance <text> process <text> virtual-links show ip ospf routing-instance <text> process-mapping show ip pim bsr-router routing-instance <text> show ip pim interface routing-instance <text> show ip pim interface routing-instance <text> detail show ip pim local-members routing-instance <text> show ip pim mroute routing-instance <text> show ip pim mroute routing-instance <text> detail show ip pim mroute routing-instance <text> group <text> show ip pim mroute routing-instance <text> group <text> detail show ip pim mroute routing-instance <text> group <text> source <text> show ip pim mroute routing-instance <text> group <text> source <text> detail show ip pim mroute routing-instance <text> rfc show ip pim mroute routing-instance <text> rfc detail

```
show ip pim mroute routing-instance <text> rfc group <text>
show ip pim mroute routing-instance <text> rfc group <text> detail
show ip pim mroute routing-instance <text> rfc group <text> source <text>
show ip pim mroute routing-instance <text> rfc group <text> source <text>
detail
show ip pim mroute routing-instance <text> rfc source <text>
show ip pim mroute routing-instance <text> rfc source <text> detail
show ip pim mroute routing-instance <text> source <text>
show ip pim mroute routing-instance <text> source <text> detail
show ip pim mroute routing-instance <text> summary
show ip pim neighbor routing-instance <text>
show ip pim neighbor routing-instance <text> detail
show ip pim nexthop routing-instance <text>
show ip pim rp-hash <text> routing-instance <text>
show ip pim rp-mapping routing-instance <text>
show ip rip routing-instance <text>
show ip rip routing-instance <text> status
show ip route routing-instance <text>
show ip route routing-instance <text> <text>
show ip route routing-instance <text> bgp
show ip route routing-instance <text> connected
show ip route routing-instance <text> forward
show ip route routing-instance <text> forward <text>
show ip route routing-instance <text> kernel
show ip route routing-instance <text> ospf
show ip route routing-instance <text> rip
show ip route routing-instance <text> static
show ip route routing-instance <text> summary
show ip route routing-instance <text> table <text>
show ip route routing-instance <text> variance
show ip route routing-instance <text> variance <text>
show ip route routing-instance <text> variance console
show ip rpf <text> routing-instance <text>
show ipv6 mld groups routing-instance <text>
show ipv6 mld groups routing-instance <text> detail
show ipv6 mld groups routing-instance <text> group-address <text>
show ipv6 mld groups routing-instance <text> group-address <text> detail
show ipv6 mld interface routing-instance <text>
show ipv6 mld ssm-map routing-instance <text>
show ipv6 mld ssm-map routing-instance <text> <text>
show ipv6 mroute routing-instance <text>
show ipv6 mroute routing-instance <text> count
show ipv6 mroute routing-instance <text> dense
show ipv6 mroute routing-instance <text> dense count
show ipv6 mroute routing-instance <text> dense summary
show ipv6 mroute routing-instance <text> group <text>
show ipv6 mroute routing-instance <text> group <text> count
show ipv6 mroute routing-instance <text> group <text> dense
show ipv6 mroute routing-instance <text> group <text> dense count
show ipv6 mroute routing-instance <text> group <text> dense summary
show ipv6 mroute routing-instance <text> group <text> source <text>
show ipv6 mroute routing-instance <text> group <text> source <text> count
show ipv6 mroute routing-instance <text> group <text> source <text> dense
```

show ipv6 mroute routing-instance <text> group <text> source <text> dense count show ipv6 mroute routing-instance <text> group <text> source <text> dense summary show ipv6 mroute routing-instance <text> group <text> source <text> sparse show ipv6 mroute routing-instance <text> group <text> source <text> sparse count show ipv6 mroute routing-instance <text> group <text> source <text> sparse summary show ipv6 mroute routing-instance <text> group <text> source <text> summary show ipv6 mroute routing-instance <text> group <text> sparse show ipv6 mroute routing-instance <text> group <text> sparse count show ipv6 mroute routing-instance <text> group <text> sparse summary show ipv6 mroute routing-instance <text> group <text> summary show ipv6 mroute routing-instance <text> source <text> show ipv6 mroute routing-instance <text> source <text> count show ipv6 mroute routing-instance <text> source <text> dense show ipv6 mroute routing-instance <text> source <text> dense count show ipv6 mroute routing-instance <text> source <text> dense summary show ipv6 mroute routing-instance <text> source <text> sparse show ipv6 mroute routing-instance <text> source <text> sparse count show ipv6 mroute routing-instance <text> source <text> sparse summary show ipv6 mroute routing-instance <text> source <text> summary show ipv6 mroute routing-instance <text> sparse show ipv6 mroute routing-instance <text> sparse count show ipv6 mroute routing-instance <text> sparse summary show ipv6 mroute routing-instance <text> summary show ipv6 multicast interface routing-instance <text> show ipv6 ospfv3 routing-instance <text> process <text> show ipv6 ospfv3 routing-instance <text> process <text> border-routers show ipv6 ospfv3 routing-instance <text> process <text> database show ipv6 ospfv3 routing-instance <text> process <text> database adv-router <text> show ipv6 ospfv3 routing-instance <text> process <text> database external show ipv6 ospfv3 routing-instance <text> process <text> database external adv-router <text> show ipv6 ospfv3 routing-instance <text> process <text> database external self-originate show ipv6 ospfv3 routing-instance <text> process <text> database external <text> show ipv6 ospfv3 routing-instance <text> process <text> database external <text> adv-router <text> show ipv6 ospfv3 routing-instance <text> process <text> database external <text> self-originate show ipv6 ospfv3 routing-instance <text> process <text> database grace show ipv6 ospfv3 routing-instance <text> process <text> database grace adv-router <text> show ipv6 ospfv3 routing-instance <text> process <text> database grace self-originate show ipv6 ospfv3 routing-instance <text> process <text> database grace <text> show ipv6 ospfv3 routing-instance <text> process <text> database grace <text> adv-router <text>

show ipv6 ospfv3 routing-instance <text> process <text> database grace <text> self-originate show ipv6 ospfv3 routing-instance <text> process <text> database inter-prefix show ipv6 ospfv3 routing-instance <text> process <text> database inter-prefix adv-router <text> show ipv6 ospfv3 routing-instance <text> process <text> database inter-prefix self-originate show ipv6 ospfv3 routing-instance <text> process <text> database inter-prefix <text> show ipv6 ospfv3 routing-instance <text> process <text> database inter-prefix <text> adv-router <text> show ipv6 ospfv3 routing-instance <text> process <text> database inter-prefix <text> self-originate show ipv6 ospfv3 routing-instance <text> process <text> database inter-router show ipv6 ospfv3 routing-instance <text> process <text> database inter-router adv-router <text> show ipv6 ospfv3 routing-instance <text> process <text> database inter-router self-originate show ipv6 ospfv3 routing-instance <text> process <text> database inter-router <text> show ipv6 ospfv3 routing-instance <text> process <text> database inter-router <text> adv-router <text> show ipv6 ospfv3 routing-instance <text> process <text> database inter-router <text> self-originate show ipv6 ospfv3 routing-instance <text> process <text> database intra-prefix show ipv6 ospfv3 routing-instance <text> process <text> database intra-prefix adv-router <text> show ipv6 ospfv3 routing-instance <text> process <text> database intra-prefix self-originate show ipv6 ospfv3 routing-instance <text> process <text> database intra-prefix <text> show ipv6 ospfv3 routing-instance <text> process <text> database intra-prefix <text> adv-router <text> show ipv6 ospfv3 routing-instance <text> process <text> database intra-prefix <text> self-originate show ipv6 ospfv3 routing-instance <text> process <text> database link show ipv6 ospfv3 routing-instance <text> process <text> database link adv-router <text> show ipv6 ospfv3 routing-instance <text> process <text> database link self-originate show ipv6 ospfv3 routing-instance <text> process <text> database link <text> show ipv6 ospfv3 routing-instance <text> process <text> database link <text> adv-router <text> show ipv6 ospfv3 routing-instance <text> process <text> database link <text> self-originate show ipv6 ospfv3 routing-instance <text> process <text> database max-age show ipv6 ospfv3 routing-instance <text> process <text> database network show ipv6 ospfv3 routing-instance <text> process <text> database network adv-router <text>

show ipv6 ospfv3 routing-instance <text> process <text> database network self-originate show ipv6 ospfv3 routing-instance <text> process <text> database network <text> show ipv6 ospfv3 routing-instance <text> process <text> database network <text> adv-router <text> show ipv6 ospfv3 routing-instance <text> process <text> database network <text> self-originate show ipv6 ospfv3 routing-instance <text> process <text> database nssa-external show ipv6 ospfv3 routing-instance <text> process <text> database nssa-external adv-router <text> show ipv6 ospfv3 routing-instance <text> process <text> database nssa-external self-originate show ipv6 ospfv3 routing-instance <text> process <text> database nssa-external <text> show ipv6 ospfv3 routing-instance <text> process <text> database nssa-external <text> adv-router <text> show ipv6 ospfv3 routing-instance <text> process <text> database nssa-external <text> self-originate show ipv6 ospfv3 routing-instance <text> process <text> database router show ipv6 ospfv3 routing-instance <text> process <text> database router adv-router <text> show ipv6 ospfv3 routing-instance <text> process <text> database router self-originate show ipv6 ospfv3 routing-instance <text> process <text> database router <text> show ipv6 ospfv3 routing-instance <text> process <text> database router <text> adv-router <text> show ipv6 ospfv3 routing-instance <text> process <text> database router <text> self-originate show ipv6 ospfv3 routing-instance <text> process <text> database self-originate show ipv6 ospfv3 routing-instance <text> process <text> interface show ipv6 ospfv3 routing-instance <text> process <text> interface <text> show ipv6 ospfv3 routing-instance <text> process <text> neighbor show ipv6 ospfv3 routing-instance <text> process <text> neighbor detail show ipv6 ospfv3 routing-instance <text> process <text> neighbor <text> show ipv6 ospfv3 routing-instance <text> process <text> route show ipv6 ospfv3 routing-instance <text> process <text> topology show ipv6 ospfv3 routing-instance <text> process <text> topology area <text> show ipv6 ospfv3 routing-instance <text> process <text> virtual-links show ipv6 ospfv3 routing-instance <text> process-mapping show ipv6 pim bsr-router routing-instance <text> show ipv6 pim interface routing-instance <text> show ipv6 pim interface routing-instance <text> detail show ipv6 pim local-members routing-instance <text> show ipv6 pim mroute routing-instance <text> show ipv6 pim mroute routing-instance <text> detail show ipv6 pim mroute routing-instance <text> group <text> show ipv6 pim mroute routing-instance <text> group <text> detail show ipv6 pim mroute routing-instance <text> group <text> source <text>

show ipv6 pim mroute routing-instance <text> group <text> source <text> detail show ipv6 pim mroute routing-instance <text> rfc show ipv6 pim mroute routing-instance <text> rfc detail show ipv6 pim mroute routing-instance <text> rfc group <text> show ipv6 pim mroute routing-instance <text> rfc group <text> detail show ipv6 pim mroute routing-instance <text> rfc group <text> source <text> show ipv6 pim mroute routing-instance <text> rfc group <text> source <text> detail show ipv6 pim mroute routing-instance <text> rfc source <text> show ipv6 pim mroute routing-instance <text> rfc source <text> detail show ipv6 pim mroute routing-instance <text> source <text> show ipv6 pim mroute routing-instance <text> source <text> detail show ipv6 pim mroute routing-instance <text> summary show ipv6 pim neighbor routing-instance <text> show ipv6 pim neighbor routing-instance <text> detail show ipv6 pim nexthop routing-instance <text> show ipv6 pim rp-hash <text> routing-instance <text> show ipv6 pim rp-mapping routing-instance <text> show ipv6 ripng routing-instance <text> show ipv6 ripng routing-instance <text> interface show ipv6 ripng routing-instance <text> status show ipv6 route routing-instance <text> show ipv6 route routing-instance <text> <text> show ipv6 route routing-instance <text> bgp show ipv6 route routing-instance <text> connected show ipv6 route routing-instance <text> forward show ipv6 route routing-instance <text> forward <text> show ipv6 route routing-instance <text> kernel show ipv6 route routing-instance <text> ospfv3 show ipv6 route routing-instance <text> ripng show ipv6 route routing-instance <text> static show ipv6 route routing-instance <text> summary show ipv6 route routing-instance <text> table <text> show ipv6 route routing-instance <text> variance show ipv6 route routing-instance <text> variance <text> show ipv6 route routing-instance <text> variance console show ipv6 rpf <text> routing-instance <text> show monitoring protocols bfd routing-instance <text> show monitoring protocols bgp routing-instance <text> show monitoring protocols multicast routing-instance <text> show monitoring protocols multicast routing-instance <text> igmp show monitoring protocols multicast routing-instance <text> ip show monitoring protocols multicast routing-instance <text> ipv6 show monitoring protocols multicast routing-instance <text> mld show monitoring protocols multicast routing-instance <text> msdp show monitoring protocols multicast routing-instance <text> pim show monitoring protocols multicast routing-instance <text> pim6 show monitoring protocols ospf routing-instance <text> process <text> show monitoring protocols ospfv3 routing-instance <text> process <text> show service twamp server routing-instance <text> session all show service twamp server routing-instance <text> session client <text> show service twamp server routing-instance <text> session summary

show service twamp server routing-instance <text> status
show snmp routing-instance
ssh <text> routing-instance <text>
telnet <text> routing-instance <text>
traceroute <text> routing-instance <text>
twping <text> routing-instance <text>

Chapter 10. VRF Commands

routing-instance

Use this command to add a VRF routing instance to an operational mode command.

operational_command routing-instance instance-name

operational_command

An operational command, such as the show command, that comprises the command name and one or more keywords or variables, or both. Refer to the description of a specific command for the command syntax, which includes details about keywords and variables.

instance-name

A VRF routing instance in the form of an alphanumeric string. The leading character cannot be _ or -. You cannot use default as an instance name; it is reserved for the default routing instance.

Operational

When adding a VRF routing instance to an Operational mode, note the following placement of the instance:

- If the command does not have optional parameters, specify the routing instance at the end of the command.
- If the command has optional parameters, specify the routing instance after the required parameters and before the optional parameters.

The following example shows how to display the update status for all hosts that are configured for dynamic DNS updates for the default routing instance.

vyatta@vyatta:~\$ show dns dynamic status

The following example shows how to display the same information for the RED routing instance.

vyatta@vyatta:~\$ show dns dynamic status routing-instance RED

routing routing-instance description

Defines a description for a routing instance.

set routing routing-instance instance-name description instance-description

delete routing routing-instance instance-name description instance-description

show routing routing-instance instance-name description instance-description

instance-name

A VRF routing instance. Alphanumeric string. The leading character cannot be _ or -. You cannot use default as an instance name; it is reserved for the default routing instance.

instance-description

Description of the routing instance.

Configuration

```
routing {
   routing-instance {
        description
   }
}
```

Use the set form of this command to define a description for a routing instance.

Use the delete form of this command to delete a description for a routing instance.

Use the show form of this command to display a description for a routing instance.

routing routing-instance instance-name

Many router commands can be configured for individual VRF routing instances. Use the following structure when adding routing instances to commands.

```
set routing routing-instance instance-name [ command ]
delete routing routing-instance instance-name [ command ]
show routing routing-instance instance-name [ command ]
```

instance-name

A VRF routing instance. Alphanumeric string. The leading character cannot be _ or -. You cannot use default as an instance name; it is reserved for the default routing instance.

command

A command, which comprises the command name and one or more keywords or variables, or both. Refer to the description of a specific command for the command syntax, which includes details about keywords and variables.

Configuration

```
routing {
   routing-instance instance-name {
      command
   }
}
```

When specifying a VRF routing instance for most Configuration mode commands, add the appropriate VRF keywords and variable to follow the initial action (set, delete, or show) and before the other keywords and variables in the command.

The following command syntax does not specify a VRF routing instance, so the command applies to the default routing instance.

set service dns dynamic interface dp0p161p1

The following example shows the syntax for the same command with the RED routing instance added. Notice that **routing routing-instance** *instance-name* has been inserted between the basic action (set in the example) and the rest of the command. Most Configuration mode commands that support VRF routing instances follow this convention.

set routing routing-instance RED service dns dynamic interface dp0p161p1

routing routing-instance interface

Binds an interface to a routing instance.

set routing routing-instance instance-name interface interface-name

delete routing routing-instance instance-name interface interface-name

show routing routing-instance instance-name interface interface-name

instance-name

A VRF routing instance. Alphanumeric string. The leading character cannot be _ or -. You cannot use default as an instance name; it is reserved for the default routing instance.

interface-name

The name of an interface.

Configuration

```
routing {
   routing-instance instance-name {
        interface interface-name
   }
}
```

This command binds a routing instance to an interface. You can bind multiple interfaces to a single routing instance by issuing this command separately for each interface. You cannot bind a single interface to multiple routing instances.

The binding configuration is independent of the type of interface, so the interface type is not specified.

Chapter 11. Source Routes

Source routing example

This example shows how to configure a simple site using PBR on the router (R1) to route traffic from two different internal subnets to two Internet links.

In this example:

- All Internet-bound traffic from subnet 192.168.10.0/24 is routed out interface dp0p0p1.
- All Internet-bound traffic from subnet 192.168.20.0/24 is routed out interface dp0p0p2.

To configure this scenario, perform the following steps in configuration mode.

Table	17	Source	routing	usina	PRR
Table		O Oul CC	routing	using	

Step	Command
Cre- ate the SRC- ROUT poli- cy.	vyatta@Rl# set policy route pbr SRC-ROUTE
Cre- ate rule 10 and spec- ify the des- tina- tion ad- dress to match In this case, any des- tina- tion ad- dress will dress will	
Spec- ify the ad- dress fam- ily for	vyatta@R1# set policy route pbr SRC-ROUTE rule 10 address-family ipv4

Step	Command
rule 10.	
Spec- ify the source ad- dress to match In this case, any ad- dress on sub- net 192.16 will match	vyatta@R1# set policy route pbr SRC-ROUTE rule 10 source address 192.168.10.0/24
Spec- ify the ac- cept ac- tion for rule 10.	vyatta@R1# set policy route pbr SRC-ROUTE rule 10 action accept
Spec- ify that all pack- ets that match should use al- ter- nate rout- ing ta- ble 1.	vyatta@Rl# set policy route pbr SRC-ROUTE rule 10 table 1
Spec- ify the des- tina- tion ad- dress to match any ad- dress.	vyatta@R1# set policy route pbr SRC-ROUTE rule 10 destination address 0.0.0.0/0

Step	Command
Spec- ify the ad- dress fam- ily for rule 20.	vyatta@Rl# set policy route pbr SRC-ROUTE rule 20 address-family ipv4
Spec- ify the ac- cept ac- tion for rule 20.	vyatta@Rl# set policy route pbr SRC-ROUTE rule 20 action accept
Spec- ify the des- tina- tion ad- dress to match any ad- dress.	vyatta@Rl# set policy route pbr SRC-ROUTE rule 20 destination address 0.0.0.0/0
Spec- ify the source ad- dress to match In this case, any ad- dress on sub- net 192.16 will match	58.20.0/24
Cre- ate the al- ter- na- tive rout- ing ta-	vyatta@Rl# set policy route pbr SRC-ROUTE rule 20 table 2

Step	Command
ble 2 and route de- fault traf- fic to the sec- ond ln- ter- net con- nec- tion.	
Com- mit the change	vyatta@R1# commit 8.
Show the al- ter- nate rout- ing ta- ble con- fig- ura- tion.	<pre>vyatta@Rl# show policy policy { route { pbr SRC-ROUTE { rule 10 { action accept address-family ipv4 destination {</pre>
As- sign an ad- dress to dp0p0	vyatta@R1# set interfaces dataplane dp0p0p1 address 12.34.56.33/24
As- sign an ad- dress to dp0p0	vyatta@R1# set interfaces dataplane dp0p0p2 address 98.76.54.44/24
As- sign an	vyatta@R1# set interfaces dataplane dp0p0p3 address 192.168.10.254/24

Table 17. Source routing using PBR (continued)

l l	e 17. Source routing using PBR (continued)
Step	Command
ad- dress to dp0p0	p3.
As- sign the poli- cy to the in- ter- face con- nect- ed to sub- net 192.16	vyatta@Rl# set interfaces dataplane dp0p0p3 policy route pbr SRC-ROUTE
As- sign an ad- dress to dp0p0	vyatta®R1# set interfaces dataplane dp0p0p4 address 192.168.20.254/24
As- sign the poli- cy to the in- ter- face con- nect- ed to sub- net 192.16	vyatta@R1# set interfaces dataplane dp0p0p4 policy route pbr SRC-ROUTE
Com- mit the change	vyatta@R1# commit
Show the dat- a- plane in- ter- face con- fig- ura- tion.	<pre>vyatta@Rl# show interfaces dataplane dataplane dp0p0p1 { address 12.34.56.33/24 } dataplane dp0p0p2 { address 98.76.54.44/24 } dataplane dp0p0p3 { address 192.168.10.254/24 policy { route SRC-ROUTE } } dataplane dp0p0p4 { address 192.168.20.254/24 policy { route SRC-ROUTE } }</pre>

Step	Command

Chapter 12. IPv6

IPv6 Overview

There are two versions of the Internet Protocol (IP) in use today. Version 4 (IPv4) is the version most commonly in use. However, there are issues with IPv4, and the Internet Engineering Task Force (IETF) has designated Version 6 (IPv6) to succeed IPv4 as the next-generation protocol for use on the Internet. IPv6 has a number of advantages over IPv4. The following are four important ones:

- Large address space: An IPv4 address consists of four bytes (32 bits). IPv6 addresses consist of 16 bytes (128 bits). The increase from 32 to 128 bits results in a huge increase in the number of available addresses: 79 billion billion billion times the addresses available in the IPv4—this is about 1038 addresses, or 1030 addresses for each person on the planet. The expanded address space means that IPv6 does not face the address exhaustion problems predicted imminently for IPv4. Furthermore, the availability for so many addresses means that private address spaces are not required, and that address shortage work-arounds such as Network Address Translation (NAT) can be eliminated. With no private addresses, there need be no hidden networks or hosts, and all devices can be globally reachable. A larger address space also means that features such as multihoming and aggregation are easier to implement.
- Support for mobile devices: A special protocol, Mobile IP, is required to support mobility. Mobile IP is not automatic in IPv4, and there are several challenges involved in implementing Mobile IP on IPv4 networks. In contrast, Mobile IP was designed into IPv6 from its inception, and is a mandatory feature in a standards-compliant IPv6 protocol stack.
- Flexibility: IPv6 includes multiple levels of hierarchy in the address space. This allows for hierarchical allocation of addressing and more efficient route aggregation. It also permits new kinds of addresses not possible in IPv4, such as link- and site-scoped addressing.
- Security: Because devices can be globally reachable, end-to-end security can be employed, which is not possible on an internetwork with hidden networks and hosts.

Supported standards

The implementation of IPv6 complies with the following standards:

- RFC 2460: Internet Protocol, version 6 (IPv6) Specification
- RFC 4443: Internet Control Message Protocol (ICMPv6) for the Internet protocol version 6 (IPv6)

IPv6 addressing

IP addresses generally take the following form:

x:x:x:x:x:x:x:x

where x is a 16-bit hexadecimal number; for example:

```
2001:0DB8:0000:0000:51DA:27C0:E4C2:0124
```

Addresses are case-insensitive; for example, the following is equivalent to the example given above:

```
2001:0db8:0000:0000:51da:27c0:E4c2:0124
```

Leading zeros are optional; for example, the following is a valid IPv6 address:

2001:DB8:0:0:51DA:27C0:E4C2:124

IPv6 addresses often contain many bytes with a value of zero. Successive fields of zeros can be represented by replacing them with a double colon, as in the following:

```
2001:DB8::51DA:27C0:E4C2:124
```

Similarly the following:

2001:DB8::124

is equivalent to the following:

```
2001:DB8:0:0:0:0:0:0124
```

and this:

```
0:0:0:0:0:0:0:1
```

is equivalent to this:

::1

The replacement by the double colon may be made only once within an address, as using the double colon more than once can result in ambiguity. For example, the following:

```
2001:DB8::27C0::0124
```

is ambiguous between these three addresses:

```
2001:0DB8:0000:27C0:0000:0000:0000:0124
2001:0DB8:0000:0000:27C0:0000:0000:0124
2001:0DB8:0000:0000:27C0:0000:0124
```

IPv6 addresses that are extensions of IPv4 addresses can be written in a mixed notation, where the rightmost four bytes of the IPv6 address are replaced with the four decimal octets

of the IPv4 address. In mixed notation, the four hexadecimal bytes are separated by colons and the four decimal octets are separated by dots, as in the following example:

```
2001:db8:0:1::192.168.100.51
```

which is equivalent to

```
2001:db8:0:1::c0a8:6433
```

Special addresses

Like IPv4, IPv6 has some special addresses, which are used by convention for special functions. For unicast addresses, these include the following:

The unspecified address. This address is used as a placeholder when no address is available (for example, in an initial DHCP address), or to stand for "any" address. In IPv6, the unspecified address can be represented as either of the following:

```
0:0:0:0:0:0:0:0:0::
```

The localhost (loopback) interface. The loopback interface is a software interface that represents the local device itself. In IPv4, the address 127.0.0.1 is used by convention for the loopback interface. In IPv6, the loopback interface can be represented by either of the following:

0:0:0:0:0:0:0:1 ::1

The IPv6 address architecture is quite rich, and includes types of addressing unavailable in IPv4, such as unicast and multicast scoped addresses, aggregatable global addresses, and anycast addresses. Multicast broadcast addresses do not exist in IPv6. For more information about the IPv6 address architecture, consult RFC 4291, IP Version 6 Addressing Architecture.

IPv6 autoconfiguration

IPv6 supports two mechanisms for automatically configuring devices with IP addresses: stateful and stateless. Both are supported in the router.

In stateful configuration, addressing and service information is distributed by a protocol (DHCPv6) in the same way that the Dynamic Host Configuration Protocol (DHCP) distributes information for IPv4. This information is "stateful" in that both the DHCP server and the DHCP client must maintain the addressing and service information.

Stateless configuration uses the Stateless Address Autoconfiguration (SLAAC) protocol, which is a component of the larger Neighbor Discovery (ND) protocol. SLAAC has a host component and a router component. In the host component of SLAAC, the IPv6 system constructs its own unicast global address from the system's network prefix together with its Ethernet media access control (MAC) address. The device proposes this address to the network, without requiring approval from a server such as a DHCP server. The combination

of network prefix and MAC address is assumed to be unique. Stateless autoconfiguration is performed by default by most IPv6 systems, including the Vyatta vRouter.

In the router component of SLAAC, routers respond to Router Solicitation (RS) packets from hosts with network prefix information in the form of Router Advertisement (RA) packet. Hosts receive these advertisements and use them to form globally unique IPv6 addresses. The RS and RA packets also provide the router discovery function, allowing hosts to locate routers that are configured to serve as default routers. The Vyatta vRouter fully supports router-side SLAAC and router discovery, including all required configurable parameters. The ND protocol and the router discovery function are specified in RFC 4861. IPv6 Stateless Address Autoconfiguration is described in RFC 4862.

IPv6 forwarding

On the Vyatta vRouter, IPv6 forwarding is enabled by default. If you want to disable IPv6 forwarding, use the following command in configuration mode: set system ipv6 disable-forwarding. This command is described in Vyatta Network Operating System Basic System Configuration Guide.

IPv6 neighbor discovery

IPv6 Neighbor Discovery (ND) provides a layer 3 to layer 2 address resolution mechanism for IPv6 similar to the way that Address Resolution Protocol (ARP) provides for layer 3 to layer 2 address resolution for IPv4. ND resolution is carried out in both the data plane and the control plane; however, it is primarily carried out in the data plane. Note that ND caches in the control plane and data plane are no longer synchronized because entries in the two caches are managed independently. The data plane cache contains entries for both forwarded and locally terminated traffic. The control plane maintains cache entries only for destinations with which the local stack of the control plane communicates.

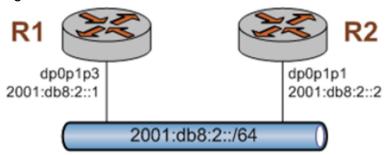
The advantages of implementing the ND protocol in the data plane are as follows:

- Avoids bandwidth issues in deployments with distributed data planes, because ND resolution can be performed locally rather than on a centralized controller.
- Improves performance because ND does not need to send all ND packets to the control plane.
- Protects against scanning DOS attacks due to resolution throttling.

Commands for IPv6

In addition to the general IPv6 information found in this chapter, information specific to major functions are in the documents for that function such as:

- Commands to enable and disable IPv6 are in *Basic System Configuration Guide*.
- Commands to configure IPv6 on a given interface are in the guide that describes the interface. For example, commands to configure IPv6 on an Ethernet interface are in *Basic System Configuration Guide*.
- Static IPv6 routing is in <u>Static IPv6 route configuration</u>.


- BGP-related dynamic IPv6 routing information is in BGP Configuration Guide.
- DHCPv6-related is in *Basic System Configuration Guideas* well as *LAN Interfaces Configuration Guide*.
- Tunneling IPv6 over IPv4 is in *Tunnels Configuration Guide*.
- Multicast routing for IPv6 is in IGMP Configuration Guide.

IPv6 Configuration Examples

Configure an IPv6 address on an interface

The following figure shows a simple network with two IPv6 nodes.

Figure 10. IPv6 address on an interface

IPv6 addresses are configured on data-plane interfaces in the same way that IPv4 addresses are. To configure dp0p1p3 on R1, perform the following steps in configuration mode.

Step	Command
Assign an IPv6 address to the dp0p1p3 interface.	vyatta@Rl# set interfaces dataplane dp0p1p3 address 2001:db8:2::1/64
Commit the change.	vyatta@Rl# commit
Verify the configuration.	vyatta@R1# show interfaces dataplane dp0p1p3 duplex auto hw-id b6:71:6b:8a:c9:3c mtu 1500 speed auto
Change to operational mode.	vyatta@Rl# exit exit vyatta@Rl:~\$
Show the status of the interfaces on R1.	vyatta@R1:~\$ show interfaces Codes: S - State, L - Link, u - Up, D - Down, A - Admin Down Interface IP Address S/L Description dpOplp1 - u/u dpOplp2 - u/u dpOplp3 2001:DB8:2::1/64 u/u

Step			Command	
	dp0p1p4 lo lo	- 127.0.0.1/8 ::1/128	u/u u/u u/u	

Table 18. Assign an IPv6 address to dp0p1p3 on R1 (continued)

To configure dp0p1p1 on R2, perform the following steps in configuration mode.

Table 19. Assign an IPv6 address to dp0p1p1 on R2

Step	Command
Assign an IPv6 address to the dp0p1p1 interface.	vyatta@R2# set interfaces dataplane dp0p1p1 address 2001:db8:2::2/64
Commit the change.	vyatta@R2# commit
Verify the configuration.	vyatta@R2# show interfaces dataplane dp0p1p1 address 2001:db8:2::2/64 duplex auto hw-id 3a:26:db:4d:63:a2 speed auto
Change to operational mode.	vyatta@R2# exit exit vyatta@R2:~\$
Show the status of the interfaces on R2.	<pre>vyatta@R2:-\$ show interfaces Codes: S - State, L - Link, u - Up, D - Down, A - Admin Down Interface IP Address S/L Description dp0plp1 2001:DB8:2::2/64 u/u dp0plp2 - u/u dp0plp3 - u/u lo 127.0.0.1/8 u/u lo ::1/128 u/u</pre>

Verify IPv6 support

A simple step to verify that IPv6 support is available is to configure the loopback interface with an IPv6 address and then ping it. To verify IPv6 support, perform the following step in operational mode.

Table 20. Confirm IPv6 support

Step	Command
Ping the loopback interface.	<pre>vyatta@R1:~\$ ping ::1 PING ::1(::1) 56 data bytes 64 bytes from ::1: icmp_seq=1 ttl=64 time=2.13 ms 64 bytes from ::1: icmp_seq=2 ttl=64 time=0.086 ms ^C ::1 ping statistics 2 packets transmitted, 2 received, 0% packet loss, time 1006ms rtt min/avg/max/mdev = 0.086/1.112/2.138/1.026 ms</pre>

Display the IPv6 routing table

When an IPv6 address is added to an interface, a connected network for it appears in the routing table. To display the routing table, perform the following step in operational mode.

Table 21. Display the IPv6 routing table

Step	Command
Show the rout- ing table.	<pre>vyatta@R1:~\$ show ipv6 route IPv6 Routing Table Codes: K - kernel route, C - connected, S - static, R - RIP, 0 - OSPF, IA - OSPF inter area, E1 - OSPF external type 1, E2 - OSPF external type 2, I - IS-IS, B - BGP > - selected route, * - FIB route, p - stale info Timers: Uptime C>* :1/128 is directly connected, lo C>* 2001:db8:2::/64 is directly connected, dp0p1p3 C * fe80::/64 is directly connected, dp0p1p2 C>* fe80::/64 is directly connected, dp0p1p1 K>* ff00::/8 is directly connected, dp0p1p3</pre>

Confirm connectivity

To confirm that R1 and R2 can communicate, use the ping command. To confirm connectivity, perform the following step in operational mode.

Table 22. Confirm connectivity between R1 and R2	Table 22.	Confirm	connectivity	between R	R1 and R2
--	-----------	---------	--------------	-----------	-----------

Step	Command
Ping R2 from R1.	<pre>vyatta@R1:~\$ ping 2001:db8:2::2 PING 2001:db8:2::2(2001:db8:2::2) 56 data bytes 64 bytes from 2001:db8:2::2: icmp_seq=1 ttl=64 time=6.52 ms 64 bytes from 2001:db8:2::2: icmp_seq=2 ttl=64 time=0.333 ms ^C 2001:db8:2::2 ping statistics 2 packets transmitted, 2 received, 0% packet loss, time 1013ms rtt min/avg/max/mdev = 0.333/3.427/6.522/3.095 ms</pre>

Display IPv6 Neighbor Discovery cache

To display a list of neighbors in the Neighbor Discovery (ND) caches in both the data plane and the controller, use the show ipv6 neighbors command. To display the ND cache in the data plane only use the show ipv6 neighbors command. Perform the following step in operational mode.

Table 23. Display the ND cache

Step	Command
Display the list of known neighbors in both the data plane and the controller.	<pre>vyatta@R1:~\$ show ipv6 neighbors IPv6 Address HW address Dataplane Controller Device 2001:db8:2::2 52:54:0:9b:6a:3f VALID [REACHABLE] VALID [REACHABLE] dp0p1p3 fe80::20c:29ff:fe4e:fcb6 52:54:0:9b:6a:3f VALID [DELAY] dp0p1p3s</pre>

Step		Command		
Display the list of known neighbors only in the data plane.	vyatta@R1:~\$ show datapla IPv6 Address Device 2001:db8:2::2 dp0plp3 fe80::20c:29ff:fe4e:fcb6 dp0plp3	HW address 52:54:0:9b:6a:3f	VALID	

Table 23. Display the ND cache (continued)

Clear ND cache

To clear the Neighbor Discovery (ND) cache, use the reset ipv6 neighbors command. To clear the ND cache on interface dp0p1p3, perform the following step in operational mode.

Table 24. Clear the ND cache Step Command

Step	Command
Clear the list of known neighbors on dp0p1p3.	vyatta@Rl:~\$ reset ipv6 neighbors interface dp0p1p3

Chapter 13. List of Acronyms

ltem	Description
ACL	access control list
ADSL	Asymmetric Digital Subscriber Line
АН	Authentication Header
AMI	Amazon Machine Image
API	Application Programming Interface
AS	autonomous system
ARP	Address Resolution Protocol
AWS	Amazon Web Services
BGP	Border Gateway Protocol
BIOS	Basic Input Output System
BPDU	Bridge Protocol Data Unit
CA	certificate authority
ССМР	AES in counter mode with CBC-MAC
CHAP	Challenge Handshake Authentication Protocol
CLI	command-line interface
DDNS	dynamic DNS
DHCP	Dynamic Host Configuration Protocol
DHCPv6	Dynamic Host Configuration Protocol version 6
DLCI	data-link connection identifier
DMI	desktop management interface
DMVPN	dynamic multipoint VPN
DMZ	demilitarized zone
DN	distinguished name
DNS	Domain Name System
DSCP	Differentiated Services Code Point
DSL	Digital Subscriber Line
eBGP	external BGP
EBS	Amazon Elastic Block Storage
EC2	Amazon Elastic Compute Cloud
EGP	Exterior Gateway Protocol
ECMP	equal-cost multipath
ESP	Encapsulating Security Payload
FIB	Forwarding Information Base
FTP	File Transfer Protocol

ltem	Description	
GRE	Generic Routing Encapsulation	
HDLC	High-Level Data Link Control	
I/O	Input/Output	
ICMP	Internet Control Message Protocol	
IDS	Intrusion Detection System	
IEEE	Institute of Electrical and Electronics Engineers	
IGMP	Internet Group Management Protocol	
IGP	Interior Gateway Protocol	
IPS	Intrusion Protection System	
IKE	Internet Key Exchange	
IP	Internet Protocol	
IPOA	IP over ATM	
IPsec	IP Security	
IPv4	IP Version 4	
IPv6	IP Version 6	
ISAKMP	Internet Security Association and Key Management Protocol	
ISM	Internet Standard Multicast	
ISP	Internet Service Provider	
кум	Kernel-Based Virtual Machine	
L2TP	Layer 2 Tunneling Protocol	
LACP	Link Aggregation Control Protocol	
LAN	local area network	
LDAP	Lightweight Directory Access Protocol	
LLDP	Link Layer Discovery Protocol	
MAC	medium access control	
mGRE	multipoint GRE	
МІВ	Management Information Base	
MLD	Multicast Listener Discovery	
MLPPP	multilink PPP	
MRRU	maximum received reconstructed unit	
MTU	maximum transmission unit	
NAT	Network Address Translation	
NBMA	Non-Broadcast Multi-Access	
ND	Neighbor Discovery	
NHRP	Next Hop Resolution Protocol	
NIC	network interface card	

ltem	Description
NTP	Network Time Protocol
OSPF	Open Shortest Path First
OSPFv2	OSPF Version 2
OSPFv3	OSPF Version 3
PAM	Pluggable Authentication Module
PAP	Password Authentication Protocol
PAT	Port Address Translation
PBR	Policy Based Routing
PCI	peripheral component interconnect
PIM	Protocol Independent Multicast
PIM-DM	PIM Dense Mode
PIM-SM	PIM Sparse Mode
РКІ	Public Key Infrastructure
PPP	Point-to-Point Protocol
PPPoA	PPP over ATM
PPPoE	PPP over Ethernet
PPTP	Point-to-Point Tunneling Protocol
PTMU	Path Maximum Transfer Unit
PVC	permanent virtual circuit
QoS	quality of service
RADIUS	Remote Authentication Dial-In User Service
RHEL	Red Hat Enterprise Linux
RIB	Routing Information Base
RIP	Routing Information Protocol
RIPng	RIP next generation
RP	Rendezvous Point
RPF	Reverse Path Forwarding
RSA	Rivest, Shamir, and Adleman
Rx	receive
S3	Amazon Simple Storage Service
SLAAC	Stateless Address Auto-Configuration
SNMP	Simple Network Management Protocol
SMTP	Simple Mail Transfer Protocol
SONET	Synchronous Optical Network
SPT	Shortest Path Tree
SSH	Secure Shell

ltem	Description
SSID	Service Set Identifier
SSM	Source-Specific Multicast
STP	Spanning Tree Protocol
TACACS+	Terminal Access Controller Access Control System Plus
TBF	Token Bucket Filter
ТСР	Transmission Control Protocol
ТКІР	Temporal Key Integrity Protocol
ToS	Type of Service
TSS	TCP Maximum Segment Size
Тх	transmit
UDP	User Datagram Protocol
VHD	virtual hard disk
vif	virtual interface
VLAN	virtual LAN
VPC	Amazon virtual private cloud
VPN	virtual private network
VRRP	Virtual Router Redundancy Protocol
WAN	wide area network
WAP	wireless access point
WPA	Wired Protected Access